QUANTIZATION OF SYMPLECTIC MANIFOLDS IN POSITIVE CHARACTERISTIC

JOSHUA MUNDINGER

DISCUSSED WITH VICTOR GINZBURG

1. INTRODUCTION

We consider the problem of quantization: given a field k and a commutative algebra A, we wish to find an associative flat k [[h]]-algebra A_h such that $A_h/(h) = A$. Given such an A_h , the quotient $A_h/(h)$ carries a natural Poisson structure, via the Hayashi construction: given a, $b \in A$ with lifts \tilde{a} , \tilde{b} to A_h , their Poisson bracket is defined by

$$\{a,b\} = \frac{[\tilde{a},\tilde{b}]}{h} \mod h.$$

This is well-defined since A_h is flat over k[[h]]. Thus, a more refined problem of quantization is: given a *Poisson* algebra A, find an associative flat k[[h]]-algebra A_h such that $A_h/(h) = A$.

More generally, we may consider when A is replaced by a sheaf of functions on a space. In the smooth category, De Wilde-Lecomte and Fedosov independently proved that every symplectic manifold admits a quantization of its sheaf of smooth functions (see eg [4]). Kontsevich generalized this by showing every Poisson manifold admits a quantization of its smooth functions [8]. In this topic proposal, we consider, the problem of quantizing a symplectic manifold over a field of positive characteristic, following Bezrukavnikov and Kaledin [2]. This followed earlier work in characteristic zero [1].

Throughout, k will be a field of characteristic p. Given a vector space, scheme, ... X over k, $X^{(1)}$ will denote its base change over the Frobenius $k \rightarrow k$.

Definition 1.1. A symplectic manifold X/k is a smooth scheme equipped with a symplectic form $\Omega \in \Gamma(X, \Omega_X^2)$: Ω is closed and the map $\vartheta \mapsto i_{\vartheta}\Omega : \mathcal{T}_X \to \Omega_X^1$ is an isomorphism (i.e. Ω is nondegenerate).

Theorem 1.2 ([2]). Let X/k be a symplectic manifold with symplectic form Ω . Assume that the relative Frobenius map **Fr** induces an isomorphism $H^{i}(X^{(1)}, \mathcal{O}_{X^{(1)}}) \to H^{i}(X, \mathcal{O}_{X})$ for i = 1, 2, 3, and $[\Omega] \in H^{2}_{dR}(X)$ satisfies $C^{2}[\Omega] = C^{1}[\Omega] = 0$ as in Theorem 3.10, then there exists a quantization \mathcal{O}_{h} of the Poisson sheaf \mathcal{O}_{X} .

2. FROBENIUS TWIST, CARTIER ISOMORPHISM, AND p-CURVATURE

Let k be a field of characteristic p. For any scheme X/k, there is the absolute Frobenius morphism $\operatorname{Frob}_X : X \to X$ which is given on \mathcal{O} by $f \mapsto f^p$. This is a lift of the absolute Frobenius on Spec k, and thus if we define $X^{(1)}$ to be the base change of X/k over $\operatorname{Frob}_k : k \to k$, the Frobenius factors through a unique map $\operatorname{Fr}_{X/k} : X \to X^{(1)}$, the *relative Frobenius*. If the scheme X is understood, the relative Frobenius will be denoted by just **Fr**. The map

Fr is a bijection on points. If X is reduced, the map $\mathcal{O}_{X^{(1)}} \to Fr_*\mathcal{O}_X$ is the embedding of the subalgebra generated by pth powers in \mathcal{O}_X .

Let $\Omega_{X/S}^{*}$ denote the de Rham complex of a morphism $X \to S$; if S = Spec k, we write $\Omega_X^{\cdot} = \Omega_{X/\text{Spec }k}^{\cdot}$. The de Rham differential d is $\mathbf{Fr}_{X/k}^{\cdot}$ -linear, and thus the de Rham cohomology has the structure of an $\mathcal{O}_{\chi(1)}$ -module. The Cartier isomorphism identifies this $\mathcal{O}_{\chi(1)}$ -module. The following statement of the Cartier isomorphism is due to Katz [7].

Theorem 2.1 (Cartier). There exists a unique map $C^{-1} : \Omega^{\bullet}_{\mathbf{Y}(1)} \to \mathbf{Fr}_* \mathcal{H}^{\bullet}(\Omega_X)$ defined by

- (1) for f a section of \mathcal{O}_X , $C^{-1}(f \otimes 1) = f^p$; (2) for f a section of \mathcal{O}_X , $C^{-1}(d(f \otimes 1)) = f^{p-1}df$; (3) for sections ω, τ of $\Omega_{\chi^{(1)}}$, $C^{-1}(\omega \wedge \tau) = C^{-1}(\omega) \wedge C^{-1}(\tau)$.

Further, if X/k *is smooth, then* C^{-1} *is an isomorphism.*

Given an \mathcal{O}_X -module with flat connection (\mathcal{M}, ∇) , we may define the p-curvature $\nabla^{(p)}$ of ∇ by

$$\nabla_{\partial}^{(p)} = (\nabla_{\partial})^p - \nabla_{\partial}^{[p]} \in \mathcal{E}nd\,\mathcal{M}.$$

It follows from an identity of Hochschild [6, Lemma 1] that $\nabla_{fa}^{(p)} = f^p \nabla_a^{(p)}$ for all sections f of \mathcal{O}_X .

Lemma 2.2 ([9] Lemma 4). If D is a derivation of a commutative \mathbb{F}_{p} -algebra A, then for $f \in A$,

$$D^{p-1}(f^{p-1}D(f)) = -D(f)^p + f^{p-1}D^p(f).$$

The following identity essentially appears in Cartier's original work on the Cartier operator [3, §II.6, Lemme 4].

Lemma 2.3 (Katz). [7, Proposition 7.1.2] If α is a closed 1-form on X and $\nabla = d + \alpha$ on $\mathcal{O}_{X_{\ell}}$ then for a vector field ∂ on X,

$$\nabla^{(p)}_{\partial} = (\alpha(\partial))^p - (i_{\partial}C(\alpha))^p,$$

where we view ∂ as a vector field on $X^{(1)}$ by $\partial(f \otimes 1) = \partial(f) \otimes 1$.

Proof sketch. Use Jacobson's identity to reduce $\nabla_{a}^{(p)}$. Then the desired identity locally reduces to Lemma 2.2. \square

We need one more operation throughout, which essentially is the inverse to the Cartier operation in dimension 1. Given a vector field ∂ on X/k, define $i_{\partial}^{[p]}: \Omega_X^i \to \Omega_X^{i-1}$ by

$$\mathfrak{i}_{\partial}^{[p]}(\alpha) = \mathfrak{i}_{\partial}{}_{[p]}(\alpha) - \mathcal{L}_{\partial}^{p-1}(\mathfrak{i}_{\partial}\alpha),$$

where $\partial^{[p]}$ is the pth power of ∂ as a derivation, and \mathcal{L} is the Lie derivative.

Lemma 2.4 ([2], Lemma 2.1). For α a closed form,

$$C(i_{\partial}^{\lfloor p \rfloor}(\alpha)) = i_{\partial}C(\alpha).$$

Proof sketch. First prove the identity when α is a 1-form. In that case, $i_{\partial}^{[p]}(\alpha) = \alpha(\partial^p) - \alpha(\partial^p)$ $\partial^{p-1}(\alpha(\partial))$; now the calculations of Lemma 2.3 show the desired identity. In the general case, show that $i_{\partial}^{[p]}$ is a derivation with respect to wedge product, up to a coboundary. \Box

3. LIFTS OF FROBENIUS AND RESTRICTED STRUCTURES

3.1. Restricted structures. The notion of a restricted Lie algebra is due to Jacobson.

Definition 3.1. Let g be a Lie algebra over k. Then g is a *restricted Lie algebra* if there is a map of sets $g \to g$ denoted by $x \mapsto x^{[p]}$ such that

$$\begin{aligned} \xi : &\mathfrak{g}^{(1)} \to \mathcal{U}\mathfrak{g} \\ \xi : & x \mapsto x^p - x^{[p]} \end{aligned}$$

is a linear map into the center of $\mathcal{U}\mathfrak{g}$.

This may be written directly in terms of nonlinear identities for $x^{[p]}$. In particular, there is a universal Lie polynomial L(x, y) such that

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + L(x,y).$$

3.2. Frobenius-constant quantizations.

Definition 3.2. Given a commutative Poisson k-algebra A, a *quantization* of A is a flat k[[h]]-algebra A_h complete with respect to the h-adic topology with a Poisson isomorphism $A_h/(h) \cong A$. Given a Poisson variety X/k, a *quantization* of X is a flat sheaf of k[[h]]-algebras \mathcal{O}_h complete with respect to the h-adic topology with a Poisson isomorphism $\mathcal{O}_h/(h) \cong \mathcal{O}_X$.

Definition 3.3 ([2]). A quantization A_h of A is *Frobenius-constant* if there exists a central ring map

$$s: A^{(1)} \rightarrow A_h$$

such that for all $a \in A_{h_{\ell}}$

$$s(a \mod h) - a^p \in (h^{p-1}).$$

Example 3.4. If \mathfrak{g} is a Lie algebra, then the (h-adic completion of) $\operatorname{Rees}_{h} \mathcal{U}\mathfrak{g}$ is a quantization of Sym \mathfrak{g} . A set map $-[\mathfrak{p}] : \mathfrak{g} \to \mathfrak{g}$ makes \mathfrak{g} into a restricted Lie algebra if and only if $\mathfrak{s} : \operatorname{Sym} \mathfrak{g}^{(1)} \to \operatorname{Rees}_{h} \mathcal{U}\mathfrak{g}$ defined by

$$\mathbf{s}(\mathbf{x}) = \mathbf{x}^{\mathbf{p}} - \mathbf{h}^{\mathbf{p}-1}\mathbf{x}^{[\mathbf{p}]}$$

is a central ring map. This shows $\widehat{\operatorname{Rees}_h}\mathcal{U}\mathfrak{g}$ is a Frobenius-constant quantization of \mathfrak{g} if \mathfrak{g} is restricted.

Example 3.5. Let A = k[x, y] be the polynomial algebra in 2 variables, with Poisson structure given by the symplectic form $\Omega = dx \wedge dy$. Then $A_h = k[[h]] \langle x, y \rangle / ([x, y] - h)$ is a quantization of A, and $s : A^{(1)} \rightarrow A_h$ defined by $s(x) = x^p$, $s(y) = y^p$ makes A_h a Frobenius-constant quantization.

3.3. **Restricted quantized algebras.** If (A_h, s) is a Frobenius-constant quantization, then Example 3.4 suggests that

(1)
$$a^{[p]} = \frac{a^p - s(a)}{h^{p-1}}$$

is the analog of a p-operation of a restricted Lie algebra. To produce a Frobenius-constant quantization, instead of keeping track of the splitting s through the deformation, we will keep track of the restricted structure $-^{[p]}$.

JOSHUA MUNDINGER

Definition 3.6. A *quantized algebra* over k is a k[h] algebra A equipped with a Lie bracket $\{-, -\}$ which is a derivation in each argument and satisfies

$$h\{a,b\} = ab - ba$$

for all $a, b \in A$.

A quantized algebra where h = 0 is a Poisson algebra; a quantized algebra which is flat over k[[h]] is a quantization.

A p-operation defined by (1) satisfies

(2)
$$(xy)^{[p]} - x^p y^{[p]} - x^{[p]} y^p + h^{p-1} x^{[p]} y^{[p]} = P(x, y),$$

where P(x, y) is a universal quantized polynomial (i.e. a Poisson polynomial with $h\{a, b\} = ab - ba$). It is defined by

$$P(x,y) = \frac{(xy)^p - x^p y^p}{h^{p-1}}$$

in the universal quantized algebra in x and y. This motivates the following definition:

Definition 3.7. A *restricted* quantized algebra is a quantized algebra A equipped with a poperation $a \mapsto a^{[p]}$ which makes $(A, \{-, -\})$ into a restricted Lie algebra, satisfies $h^{[p]} = h$, and satisfies (2).

If A has a Frobenius-constant quantization, then it is restricted quantized. Two of the main theorems of [2] deal with the existence and uniqueness of restricted structures. We will deal with the existence of restricted structures in Theorems 3.8 and 3.9.

Theorem 3.8 ([2] Theorem 1.11). Let X/k be a symplectic manifold with symplectic form Ω . The following are equivalent:

- (1) Hamiltonian vector fields on X are closed under pth powers;
- (2) $C^2(\Omega) = 0.$

If X/k has a Frobenius-constant quantization, then both claims hold.

Proof. For f a section of \mathcal{O}_X , let H_f denote the Hamiltonian vector field for f. The vector field $H_f^{[p]}$ is Hamiltonian if and only if

$$C(\mathfrak{i}_{H^{[p]}}\Omega)=0.$$

Now $\mathcal{L}_{H_f}^{p-1}(\mathfrak{i}_{H_f}\Omega) = \mathcal{L}_{H_f}^{p-1}(df) = 0$, so by Lemma 2.4,

$$C(\mathfrak{i}_{H^{[p]}}\Omega) = C(\mathfrak{i}_{H_{f}}^{[p]}\Omega) = \mathfrak{i}_{H_{f}}C(\Omega).$$

Thus, $H_f^{[p]}$ is Hamiltonian for all f if and only if $C(\Omega) = 0$. If X/k has a Frobenius-constant quantization, then \mathcal{O}_X is restricted Poisson, and $H_{f[p]} = H_f^{[p]}$.

The following is an affine version of [2, Theorem 1.12], and appears there as Proposition 2.6. If as above $C^2(\Omega) = 0$, then the symplectic form Ω is locally exact. If Ω is exact, then and this allows for the construction of restricted structures.

Lemma 3.9. Let A the coordinate ring of an affine symplectic manifold over k. Suppose the symplectic form Ω is exact and λ is a 1-form such that $d\lambda = \Omega$. Then restricted structures -[p] on A are in bijection with Frobenius derivations κ of A into the Poisson center of A, via the formula

$$\mathfrak{a}^{[\mathfrak{p}]} + \kappa(\mathfrak{a}) = \mathfrak{i}_{H_{\mathfrak{a}}}^{[\mathfrak{p}]}(\lambda).$$

Sketch. Under Ω , λ is dual to a vector field ξ . The condition that $d\lambda = \Omega$ transports to that ξ – id is a derivation of the Poisson bracket. Then the various restricted quantized identities for $-^{[p]}$ follow from differentiating the universal identities for L(x, y) and P(x, y) with respect to ξ .

Now recall that since the Cartier operators $C^i : \mathbf{Fr}_* \mathcal{H}^i(\Omega^{\bullet}_X) \to \Omega^i_{X'}$ are defined on the cohomology sheaves, they define operations on the associated filtration on hypercohomology groups, $H_{dR}(X)$.

Theorem 3.10. Let X/k is a symplectic manifold with symplectic form Ω , and let $[\Omega] \in H^2_{dR}(X)$ denote the image of $\Omega \in H^0(\mathcal{H}^2(\Omega^{\bullet}))$. If both $C^2([\Omega]) = 0$ and $C^1([\Omega]) = 0$, then X has a restricted structure compatible with Ω .

Proof. The condition that $C^2[\Omega] = 0$ implies that Ω is locally exact. Let $\{U_\alpha\}_\alpha$ be a cover such that $\Omega|_{U_\alpha} = d\lambda_\alpha$; then $\{\lambda_\alpha - \lambda_\beta\}$ defines a Čech cohomology class in $H^1(\Omega^1_X)$. The condition that $C^1[\Omega] = 0$ is exactly that this class vanishes; that is, after a refinement, we have

$$\left(\lambda_{\alpha}-\lambda_{\beta}\right)|_{U_{\alpha\beta}}=d\mu_{\alpha\beta}$$

for some $\mu_{\alpha\beta} \in \Gamma(U_{\alpha\beta}, \mathcal{O})$. Then $i_{H_{\alpha}}^{[p]}(\lambda_{\alpha} - \lambda_{\beta}) = i_{H_{\alpha}}^{[p]}(d\mu_{\alpha\beta}) = 0$. Thus, according to Lemma 3.9, we may define a restricted structure by

$$\mathfrak{a}^{\lfloor p \rfloor}|_{\mathfrak{U}_{\alpha}} = \mathfrak{i}_{\mathfrak{H}_{\alpha}}^{\lfloor p \rfloor}(\lambda_{\alpha}).$$

The relation $i_{H_{\alpha}}^{[p]}(\lambda_{\alpha} - \lambda_{\beta}) = 0$ shows this is well-defined.

4. LOCAL STRUCTURE OF QUANTIZATION

Definition 4.1. A *quantization base* is a commutative Artinian local k[[h]]-algebra (B, \mathfrak{m}_B) with $h \in \mathfrak{m}_B$ equipped with a derivation $K : B \to B^{(1)}$ such that K(h) = h.

In the above definition, $B^{(1)}$ is a B-module via the Frobenius map, and thus such a K is defined by a map $K : B \to B^{(1)}$ satisfying

$$\mathsf{K}(\mathsf{a}\mathsf{b}) = \mathsf{a}^{\mathsf{p}}\mathsf{K}(\mathsf{b}) + \mathsf{K}(\mathsf{a})\mathsf{b}^{\mathsf{p}}.$$

This is equivalent to the data of a restricted structure on B as a quantized algebra with trivial bracket, by setting $b^{[p]} = K(b)$.

Definition 4.2. A B-*quantization* of a restricted Poisson k-algebra A is a restricted quantized flat B-algebra A^B equipped with a restricted Poisson isomorphism $A^B/\mathfrak{m}_B A^B \to A$. A B-*quantization* of a restricted Poisson variety X/k is a flat B-algebra sheaf \mathcal{O}^B equipped with a restricted Poisson isomorphism $\mathcal{O}^B/\mathfrak{m}_B \mathcal{O}^B \to \mathcal{O}_X$.

In order to produce a quantization as in Theorem 1.2, we will only need to consider when $B = k[h]/(h^{m+1})$ for $m \ge 0$, equipped with the Frobenius derivation K defined by K(h) = h. However, the proofs require reducing noncommutative deformations over such B to commutative deformations over bases B where h = 0.

The local model for a space X/k which we wish to quantize will be the Frobenius neighborhood. By definition, for X/k, the *Frobenius neighborhood* of a point $x \in X$ is the space

$$\operatorname{Spec}(\mathcal{O}_{X,x}/\mathfrak{m}_x^{\lfloor p \rfloor}) \to X,$$

where $\mathfrak{m}_{x}^{[p]}$ is the ideal generated by pth powers of elements of \mathfrak{m}_{x} . If X/k is regular at the (locally) closed point x, then by the Cohen Structure Theorem, the completion $\hat{\mathcal{O}}_{X,x}$ is isomorphic to k [[$\mathfrak{m}_{x}/\mathfrak{m}_{x}^{2}$]].

When X is symplectic, the dimension of the cotangent space at a closed point is even. For $n = \dim X/2$, the Frobenius neighborhood of a closed point is the spectrum of

$$A_{F} = k[x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n}]/(x_{1}^{p}, \dots, x_{n}^{p}, y_{1}^{p}, \dots, y_{n}^{p}).$$

Pulling back the symplectic form of X equips Spec A_F with a symplectic form. When X is symplectic, so that n is even, Spec A_F is also equipped with a symplectic form. Our first step in understanding quantizations of Spec A_F is to understand the symplectic forms on Spec A_F , up to isomorphism.

Let $\operatorname{Aut}(A_F)$ be the group scheme of automorphisms of Spec A_F . This is an affine group scheme over k. Let $\operatorname{Aut}(A_F)_0$ denote the group subscheme of automorphisms preserving the maximal ideal $(x_1, \ldots, x_n, y_1, \ldots, y_n)$. The group $\operatorname{Aut}(A_F)$ is not reduced, but $\operatorname{Aut}(A_F)_0$ is.

Example 4.3. For $A = k[x]/x^p$, $Aut(A) = Spec k[a_0, a_1^{\pm 1}, a_2, ..., a_{p-1}]/(a_0^p)$. An R-point $(a_0, ..., a_{p-1})$ corresponds to the automorphism of $A \otimes_k R$ induced by

$$\mathbf{x} \mapsto \mathbf{a}_0 + \mathbf{a}_1 \mathbf{x} + \dots + \mathbf{a}_{p-1} \mathbf{x}^{p-1}$$
.

This preserves the maximal ideal (x) if and only if $a_0 = 0$. Hence

Aut(A)₀ = Spec k[
$$a_1^{\pm 1}$$
, a_2 , ..., a_{p-1}].

To study quantizations of A_F , we study first a commutative version: we study restricted Poisson structures on $A_F \otimes B$ where B is an Artinian k-algebra. Suppose B is equipped with a Frobenius derivation $K : B \to B$ and $A_F \otimes B/B$ is equipped with a restricted Poisson structure compatible with K. First define $Aut(A_F)^B = Res_{B/k} Aut(A_F \otimes B)$ to be the group of B-linear automorphisms of $A_F \otimes B$. Then define

$$G^B \subseteq Aut(A_F)^B \qquad G^B_0 \subseteq Aut(A_F)^B_0$$

to be the subgroups preserving the restricted Poisson structure.

Theorem 4.4 ([2] Proposition 3.4). Let B/k be a quantization base. Then all nondegenerate restricted Poisson structures on $A_F \otimes B/B$ compatible with K are isomorphic.

Vague sketch: First, the nondegenerate restricted Poisson structures form an irreducible variety. Then estimate the dimension of the $Aut(A_F)^B$ -orbit of a structure, using Lemma 3.9 to count the dimension of the space of restricted structures and that the Lie algebra of $Aut(A_F)_0^B$ is the Lie algebra of Hamiltonian vector fields on $A_F \otimes B$. One obtains that the orbit has codimension zero.

To count dimensions via Lemma 3.9, one needs a version of the Cartier isomorphism for $A_F \otimes B/B$, which is not smooth; nonetheless there is a version.

Theorem 4.5 ([2] Proposition 3.6). Let $I \subseteq B \to B_0$ be a small extension of the quantization base B_0 . Let A_0 be a quantization of A_F over B_0 . Then all regular quantizations A_1 of A_0 over B are isomorphic.

Sketch. The idea of the above Theorem is to reduce to the case when h = 0, and then apply Theorem 4.4. To reduce to when h = 0, we consider the Baer sum $B' = B \oplus^{B_0} B$ and for $\delta : B \to B'$ the diagonal map, $B'' = B'/\delta(\mathfrak{m}_B)$. Then $B'' = B'/\delta(\mathfrak{m}_B)$ has h = 0, and $B' = B \oplus^k B''$. Then for A_1 and A_2 B-quantizations of A_0 , $A_1 \oplus^{A_0} A_2$ is a B'-quantization of

A₀, which reduces to a B["]-quantizatization, to which we may apply Theorem 4.4. Tracing through all involved identifications gives $A_1 \cong A_2$ over A_0 .

Corollary 4.6 ([2] Corollary 3.7). With notation as in Theorem 4.5, if A_1 is a B-quantization of A_0/B_0 , then $Aut(A_1) \rightarrow Aut(A_0)$ is a surjective map of algebraic groups.

Finally, we observe that A_F has a Frobenius-constant quantization, related to Example 3.5. Define

$$D_1 = k[[h]] \langle x, y \rangle / (x^p, y^p, xy - yx - h),$$

with splitting $s : (D_1/hD_1)^{(1)} \to D_1$ defined by s(x) = s(y) = 0. Then $D = D_1^{\otimes n}$ is a Frobenius-constant quantization of A_F .

5. GLOBAL STORY

To pass from local to global quantizations, we use the technique of formal geometry. The first step is to construct the *bundle of Frobenius frames*

$$\mathcal{M}_{X} = "\{ \langle x, \varphi \rangle \mid x \in X, \varphi : \mathcal{O}_{X,x} \to A_{F} \text{ étale} \} "$$

Recalling that $Aut(A_F)_0$ is the group subscheme of $Aut(A_F)$ stabilizing the maximal ideal,

Proposition 5.1. $\mathcal{M}_X / \operatorname{Aut}(A_F)_0 = X$ and $\mathcal{M}_X / \operatorname{Aut}(A_F) = X^{(1)}$.

Now given a G-torsor \mathcal{M} over Y, we have the localization functor

Loc :
$$G-rep_{fd} \rightarrow Coh(\mathcal{O}_Y)$$
.

This is the associated bundle construction for the principal G-bundle \mathcal{M} . In the context of principle bundles in flat topology, the construction takes the form of flat descent: given a flat cover $\{U_i \rightarrow Y\}$ such that $\mathcal{M} \times_Y U_i$ is trivialized,

$$\operatorname{Loc}(\mathcal{M}, V)(U_i) = \mathcal{O}_{U_i} \otimes_k V;$$

the data of a G-representation on V gives the descent datum. Localization is exact since flat descent is.

Proposition 5.2. As a sheaf on $X^{(1)}$, $Loc(\mathcal{M}_X, A_F) = \mathbf{Fr}_* \mathcal{O}_X$, where \mathbf{Fr} is the relative Frobenius.

The main idea of Bezrukavnikov and Kaledin's formal geometry is to restrict the torsor of Frobenius frames to a torsor over the structure group of a local quantization. Localizing the (local) quantization of A then gives a localization of the structure sheaf. The formal statement is as follows:

Definition 5.3 ([2] Definition 4.1). Given a group G with a map $G \to Aut(A_F)$, a G-structure is a G-torsor \mathcal{M}_G on $X^{(1)}$ equipped with a map $\mathcal{M}_G \to \mathcal{M}_X$ over $G \to Aut(A_F)$.

Lemma 5.4 ([2] Lemma 4.3). Let A_B be a B-quantization of A_F , with restricted quantized automorphism group G^B . If \mathcal{M}^B is a G^B -structure, then $Loc(\mathcal{M}^B, A_B)$ is a B-quantization of \mathcal{O}_X .

Proof. Set $\mathcal{O}_B = \text{Loc}(\mathcal{M}^B, A_B)$. We have identifications $\mathfrak{m}_B \mathcal{O}_B = \text{Loc}(\mathcal{M}^B, \mathfrak{m}_B A_B)$ and $\mathcal{O}_B/\mathfrak{m}_B \mathcal{O}_B = \text{Loc}(\mathcal{M}^B, A_B/\mathfrak{m}_B A_B)$ since the natural map pulls back to an isomorphism on a trivializing cover for \mathcal{M}^B . Since localization is exact, we obtain an exact sequence

$$0 \to \mathfrak{m}_{\mathrm{B}}\mathcal{O}_{\mathrm{B}} \to \mathcal{O}_{\mathrm{B}} \to \mathcal{O}_{\mathrm{B}} / \mathfrak{m}_{\mathrm{B}}\mathcal{O}_{\mathrm{B}} \to 0.$$

By the local criterion for flatness, \mathcal{O}_B is flat over B. The action of G^B on $A_B/\mathfrak{m}_B A_B = A$ factors through Aut A, so we conclude $\mathcal{O}_B/\mathfrak{m}_B \mathcal{O}_B = \text{Loc}(\mathcal{M}^B, A) \cong \text{Loc}(\mathcal{M}_X, A)$. Now apply Proposition 5.2.

The converse to the above also holds [2, Lemma 4.3].

Thus, our problem is to construct G^B -structures as B ranges over $k[h]/(h^{n+1})$ for $n \ge 0$. Given a morphism $G' \to G$ of groups and a G-torsor \mathcal{M}_G , a *lift* of \mathcal{M}_G to G' is a G'-torsor $\mathcal{M}_{G'}$ and a map $\mathcal{M}_{G'} \to \mathcal{M}_G$ over $G' \to G$. The existence and uniqueness of lifts is governed by cohomology, according to the work of Giraud.

Theorem 5.5 ([5]). Suppose $1 \to H \to G' \to G \to 1$ is a short exact sequence of algebraic groups over k, and H is abelian. Let \mathcal{M}_G be a G-torsor on Y. Then the obstruction to lifting \mathcal{M}_G to a G'-torsor is

$$Loc(\mathcal{M}_{G}, c) \in H^{2}(Y, Loc(\mathcal{M}_{G}, H))$$

(where H is a G-representation by conjugation by G). If the obstruction vanishes, then lifts are a torsor over

$$H^{T}(Y, Loc(\mathcal{M}_{G}, H)).$$

This technique is used in [2] to construct a first-order deformation. However, a first order deformation may be constructed directly.

Theorem 5.6. If X/k is a symplectic manifold equipped with a restricted structure, then X has a $B = k[h]/h^2$ -quantization given by $\mathcal{O}^B = \mathcal{O}_X \oplus h\mathcal{O}_X$ with star product

$$f_1 \star f_2 = f_1 f_2 + \frac{h}{2} \{f_1, f_2\},$$

Poisson bracket from X, and restricted operation

$$(f + hg)^{[p]} = f^{[p]} + h(g^p + ad_f^{p-1}(g)).$$

Proof. It is standard that this star product and Poisson bracket make O^B a B-quantization of O_X . Observe that the restricted operation satisfies

$$(f + hg)^{\lfloor p \rfloor} = f^{\lfloor p \rfloor} + hg^p + L(f, hg),$$

where L is Jacobson's universal Lie polynomial with respect to the Poisson bracket, and that in a restricted Poisson algebra, $(ha)^{[p]} = ha^p$. As X is restricted symplectic, by Theorem 4.4, the restricted symplectic structure on the Frobenius neighborhood of a closed point $x \in X$ is isomorphic to the standard restricted symplectic structure. The Frobenius neighborhood Spec A_F with standard structure has a first-order restricted quantization given by the Moyal product on $A_F \oplus hA_F$. Hence, its p-operation satisfies $(f + hg)^{[p]} = f^{[p]} + h(g^p + ad_f^{p-1}(g))$. Thus, if $x \in X$ is a closed point with ideal \mathfrak{m}_x , the required identities hold in $\mathcal{O}_{X,x}/\mathfrak{m}_x^{[p]}$. By Nakayama's Lemma, the required identities hold everywhere.

Lemma 5.7 ([2] Lemma 3.10). Let $I \subseteq B \to B_0$ be a small extension of quantization bases. The kernel of $G^B \to G^{B_0}$ is the group scheme

$$\mathsf{H}\langle \mathrm{I}\rangle = \ker \left[\mathbf{Fr}_* \Omega^1_{\mathtt{cl}}(\mathsf{A}_{\mathsf{F}}) \otimes \mathrm{I} \xrightarrow{\mathsf{C} - \mathtt{Fr} \otimes \mathsf{K}} \Omega^1(\mathsf{A}_{\mathsf{F}}) \otimes \mathrm{I} \right]$$

where $K : I \rightarrow I$ is the restriction of the restricted structure of B to I.

Sketch. The kernel of $G^B \to G^{B_0}$ is the group of transformations of the form id + D where $D : I \otimes_B A^B \to A^B$ is a B-derivation. The equations that D must satisfy are transferred under symplectic duality to the condition that $(C^1 - Fr \otimes K)(i_D \Omega) = 0$.

8

Example 5.8. Consider $B_0 = k[h]/(h^n)$, $B = k[h]/(h^{n+1})$, so that $I = (h^n)/(h^{n+1})$. There is a unique restricted structure on $k[h]/(h^m)$, given by the Frobenius-derivation with $K : h \mapsto h$. Since K is a Frobenius-derivation, $K(h^m) = mh^{(m-1)p+1}$, so that K(I) = 0 for $n \ge 2$. Hence, for $n \ge 2$ we have

$$H\langle I\rangle = \ker\left[C: \textbf{Fr}_*\Omega^1_{cl}(A_F) \to \Omega^1(A_F)\right].$$

The localization of this sheaf to X is

$$\ker\left[C:\mathbf{Fr}_*\Omega^1_{cl}(X)\to\Omega^1(X^{(1)})\right],$$

which is exactly the sheaf of exact 1-forms Ω_{ex}^1 on X.

Proof of Theorem 1.2. Let X be a symplectic manifold with symplectic form Ω , satisfying

$$\operatorname{Fr}^*: \operatorname{H}^{\mathfrak{i}}(X^{(1)}, \mathcal{O}_{X^{(1)}}) \cong \operatorname{H}^{\mathfrak{i}}(X, \mathcal{O}_X)$$

for i = 1, 2, 3, and satisfying $C^2[\Omega] = 0$ and $C^1[\Omega] = 0$. By Theorem 3.10, X admits a restricted structure. By Theorem 5.6, X has a first-order restricted quantization, which defines a $G^{k[h]/h^2}$ -structure.

We have the short exact sequence

$$0 \to \mathcal{O}_{\mathbf{X}(1)} \to \mathbf{Fr}_*\mathcal{O}_{\mathbf{X}} \to \mathbf{Fr}_*\Omega^1_{e\mathbf{X}} \to 0,$$

where Ω_{ex}^1 is the sheaf of exact 1-forms on X. By the long exact sequence in cohomology, $H^2(\Omega_{ex}^1) = H^1(\Omega_{ex}^1) = 0$. By Example 5.8, the obstructions to extending a $G^{k[h]/h^n}$ -structure to a $G^{k[h]/h^{n+1}}$ structure is $H^2(\Omega_{ex}^1)$, and such extensions are a torsor over $H^1(\Omega_{ex}^1)$.

By Theorem 5.5 and Corollary 4.6, a $G^{k[h]/h^2}$ -structure extends uniquely to a $G^{k[h]/h^n}$ -structure for any $n \ge 2$. Now apply Lemma 5.4.

REFERENCES

- Roman Bezrukavnikov and Dmitry Kaledin. Fedosov quantization in algebraic context. Moscow Mathematical Journal, 4(3):559–592, 2004.
- [2] Roman Bezrukavnikov and Dmitry Kaledin. Fedosov quantization in positive characteristic. *Journal of the American Mathematical Society*, 21(2):409–438, 2008.
- [3] Pierre Cartier. Questions de rationalité des diviseurs en géométrie algébrique. Bulletin de la Société Mathématique de France, 86:177–251, 1958.
- [4] Boris V Fedosov. A simple geometrical construction of deformation quantization. Journal of Differential Geometry, 40(2):213–238, 1994.
- [5] Jean Giraud. Cohomologie non abélienne. Springer-Verlag, 1971.
- [6] Gerhardt Hochschild. Simple algebras with purely inseparable splitting fields of exponent 1. Transactions of the American Mathematical Society, 79(2):477–489, 1955.
- [7] Nicholas M Katz. Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Inventiones mathematicae, 18(1-2):1–118, 1972.
- [8] Maxim Kontsevich. Deformation quantization of Poisson manifolds. Letters in Mathematical Physics, 66(3):157– 216, 2003.
- [9] Conjeerveram Srirangachari Seshadri. L'opération de Cartier. Applications. Séminaire Claude Chevalley, 4:1–26, 1958.