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1. INTRODUCTION

We consider the problem of quantization: given a field k and a commutative algebra A,
we wish to find an associative flat k [[h]]-algebra Ah such that Ah/(h) = A. Given such an
Ah, the quotient Ah/(h) carries a natural Poisson structure, via the Hayashi construction:
given a,b ∈ Awith lifts ã, b̃ to Ah, their Poisson bracket is defined by

{a,b} =
[ã, b̃]
h

mod h.

This is well-defined since Ah is flat over k [[h]]. Thus, a more refined problem of quan-
tization is: given a Poisson algebra A, find an associative flat k [[h]]-algebra Ah such that
Ah/(h) = A.

More generally, we may consider when A is replaced by a sheaf of functions on a space.
In the smooth category, De Wilde-Lecomte and Fedosov independently proved that every
symplectic manifold admits a quantization of its sheaf of smooth functions (see eg [4]).
Kontsevich generalized this by showing every Poisson manifold admits a quantization of
its smooth functions [8]. In this topic proposal, we consider, the problem of quantizing a
symplectic manifold over a field of positive characteristic, following Bezrukavnikov and
Kaledin [2]. This followed earlier work in characteristic zero [1].

Throughout, kwill be a field of characteristic p. Given a vector space, scheme, . . .X over
k, X(1) will denote its base change over the Frobenius k→ k.

Definition 1.1. A symplectic manifold X/k is a smooth scheme equipped with a symplectic
form Ω ∈ Γ(X,Ω2X): Ω is closed and the map ∂ 7→ i∂Ω : TX → Ω1X is an isomorphism (i.e.
Ω is nondegenerate).

Theorem 1.2 ([2]). Let X/k be a symplectic manifold with symplectic form Ω. Assume that
the relative Frobenius map Fr induces an isomorphism Hi(X(1),OX(1)) → Hi(X,OX) for i =

1, 2, 3, and [Ω] ∈ H2dR(X) satisfies C2[Ω] = C1[Ω] = 0 as in Theorem 3.10, then there exists a
quantization Oh of the Poisson sheaf OX.

2. FROBENIUS TWIST, CARTIER ISOMORPHISM,
AND p-CURVATURE

Let k be a field of characteristic p. For any scheme X/k, there is the absolute Frobenius
morphism FrobX : X → X which is given on O by f 7→ fp. This is a lift of the absolute
Frobenius on Spec k, and thus if we define X(1) to be the base change of X/k over Frobk :

k→ k, the Frobenius factors through a unique map FrX/k : X→ X(1), the relative Frobenius.
If the scheme X is understood, the relative Frobenius will be denoted by just Fr. The map
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Fr is a bijection on points. If X is reduced, the mapOX(1) → Fr∗OX is the embedding of the
subalgebra generated by pth powers in OX.

Let Ω·X/S denote the de Rham complex of a morphism X → S; if S = Speck, we write
Ω·X = Ω·X/ Speck. The de Rham differential d is FrX/k-linear, and thus the de Rham co-
homology has the structure of an OX(1) -module. The Cartier isomorphism identifies this
OX(1) -module. The following statement of the Cartier isomorphism is due to Katz [7].

Theorem 2.1 (Cartier). There exists a unique map C−1 : Ω•
X(1) → Fr∗H•(ΩX) defined by

(1) for f a section of OX, C−1(f⊗ 1) = fp;
(2) for f a section of OX, C−1(d(f⊗ 1)) = fp−1df;
(3) for sectionsω, τ ofΩX(1) , C−1(ω∧ τ) = C−1(ω)∧C−1(τ).

Further, if X/k is smooth, then C−1 is an isomorphism.

Given anOX-module with flat connection (M,∇), we may define the p-curvature∇(p)

of ∇ by

∇(p)
∂ = (∇∂)p −∇∂[p] ∈ EndM.

It follows from an identity of Hochschild [6, Lemma 1] that ∇(p)
f∂ = fp∇(p)

∂ for all sections
f of OX.

Lemma 2.2 ([9] Lemma 4). If D is a derivation of a commutative Fp-algebra A, then for f ∈ A,

Dp−1(fp−1D(f)) = −D(f)p + fp−1Dp(f).

The following identity essentially appears in Cartier’s original work on the Cartier op-
erator [3, §II.6, Lemme 4].

Lemma 2.3 (Katz). [7, Proposition 7.1.2] If α is a closed 1-form on X and ∇ = d+ α on OX,
then for a vector field ∂ on X,

∇(p)
∂ = (α(∂))p − (i∂C(α))

p,

where we view ∂ as a vector field on X(1) by ∂(f⊗ 1) = ∂(f)⊗ 1.

Proof sketch. Use Jacobson’s identity to reduce ∇(p)
∂ . Then the desired identity locally re-

duces to Lemma 2.2. �

We need one more operation throughout, which essentially is the inverse to the Cartier
operation in dimension 1. Given a vector field ∂ on X/k, define i[p]∂ : ΩiX → Ωi−1X by

i
[p]
∂ (α) = i∂[p](α) −L

p−1
∂ (i∂α),

where ∂[p] is the pth power of ∂ as a derivation, and L is the Lie derivative.

Lemma 2.4 ([2], Lemma 2.1). For α a closed form,

C(i
[p]
∂ (α)) = i∂C(α).

Proof sketch. First prove the identity when α is a 1-form. In that case, i[p]∂ (α) = α(∂p) −

∂p−1(α(∂)); now the calculations of Lemma 2.3 show the desired identity. In the general
case, show that i[p]∂ is a derivation with respect to wedge product, up to a coboundary. �
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3. LIFTS OF FROBENIUS AND RESTRICTED STRUCTURES

3.1. Restricted structures. The notion of a restricted Lie algebra is due to Jacobson.

Definition 3.1. Let g be a Lie algebra over k. Then g is a restricted Lie algebra if there is a
map of sets g → g denoted by x 7→ x[p] such that

ξ :g(1) → Ug
ξ :x 7→ xp − x[p]

is a linear map into the center of Ug.

This may be written directly in terms of nonlinear identities for x[p]. In particular, there
is a universal Lie polynomial L(x,y) such that

(x+ y)[p] = x[p] + y[p] + L(x,y).

3.2. Frobenius-constant quantizations.

Definition 3.2. Given a commutative Poisson k-algebra A, a quantization of A is a flat
k [[h]]-algebra Ah complete with respect to the h-adic topology with a Poisson isomor-
phism Ah/(h) ∼= A. Given a Poisson variety X/k, a quantization of X is a flat sheaf of
k [[h]]-algebras Oh complete with respect to the h-adic topology with a Poisson isomor-
phism Oh/(h) ∼= OX.

Definition 3.3 ([2]). A quantization Ah of A is Frobenius-constant if there exists a central
ring map

s : A(1) → Ah

such that for all a ∈ Ah,
s(a mod h) − ap ∈ (hp−1).

Example 3.4. If g is a Lie algebra, then the (h-adic completion of) Reesh Ug is a quantization of
Sym g. A set map −[p] : g → g makes g into a restricted Lie algebra if and only if s : Sym g(1) →
Reesh Ug defined by

s(x) = xp − hp−1x[p]

is a central ring map. This shows ̂Reesh Ug is a Frobenius-constant quantization of g if g is re-
stricted.

Example 3.5. Let A = k[x,y] be the polynomial algebra in 2 variables, with Poisson structure
given by the symplectic formΩ = dx∧dy. ThenAh = k [[h]] 〈x,y〉/([x,y]−h) is a quantization
of A, and s : A(1) → Ah defined by s(x) = xp, s(y) = yp makes Ah a Frobenius-constant
quantization.

3.3. Restricted quantized algebras. If (Ah, s) is a Frobenius-constant quantization, then
Example 3.4 suggests that

(1) a[p] =
ap − s(a)

hp−1

is the analog of a p-operation of a restricted Lie algebra. To produce a Frobenius-constant
quantization, instead of keeping track of the splitting s through the deformation, we will
keep track of the restricted structure −[p].
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Definition 3.6. A quantized algebra over k is a k[h] algebra A equipped with a Lie bracket
{−,−} which is a derivation in each argument and satisfies

h{a,b} = ab− ba

for all a,b ∈ A.

A quantized algebra where h = 0 is a Poisson algebra; a quantized algebra which is flat
over k [[h]] is a quantization.

A p-operation defined by (1) satisfies

(2) (xy)[p] − xpy[p] − x[p]yp + hp−1x[p]y[p] = P(x,y),

where P(x,y) is a universal quantized polynomial (i.e. a Poisson polynomial with h{a,b} =
ab− ba). It is defined by

P(x,y) =
(xy)p − xpyp

hp−1

in the universal quantized algebra in x and y. This motivates the following definition:

Definition 3.7. A restricted quantized algebra is a quantized algebra A equipped with a p-
operation a 7→ a[p] which makes (A, {−,−}) into a restricted Lie algebra, satisfies h[p] = h,
and satisfies (2).

If A has a Frobenius-constant quantization, then it is restricted quantized. Two of the
main theorems of [2] deal with the existence and uniqueness of restricted structures. We
will deal with the existence of restricted structures in Theorems 3.8 and 3.9.

Theorem 3.8 ([2] Theorem 1.11). Let X/k be a symplectic manifold with symplectic formΩ. The
following are equivalent:

(1) Hamiltonian vector fields on X are closed under pth powers;
(2) C2(Ω) = 0.

If X/k has a Frobenius-constant quantization, then both claims hold.

Proof. For f a section of OX, let Hf denote the Hamiltonian vector field for f. The vector
field H[p]

f is Hamiltonian if and only if

C(i
H

[p]
f

Ω) = 0.

Now Lp−1Hf
(iHfΩ) = Lp−1Hf

(df) = 0, so by Lemma 2.4,

C(i
H

[p]
f

Ω) = C(i
[p]
Hf
Ω) = iHfC(Ω).

Thus, H[p]
f is Hamiltonian for all f if and only if C(Ω) = 0. If X/k has a Frobenius-constant

quantization, then OX is restricted Poisson, and Hf[p] = H
[p]
f . �

The following is an affine version of [2, Theorem 1.12], and appears there as Proposition
2.6. If as above C2(Ω) = 0, then the symplectic form Ω is locally exact. If Ω is exact, then
and this allows for the construction of restricted structures.

Lemma 3.9. Let A the coordinate ring of an affine symplectic manifold over k. Suppose the sym-
plectic form Ω is exact and λ is a 1-form such that dλ = Ω. Then restricted structures −[p] on A
are in bijection with Frobenius derivations κ of A into the Poisson center of A, via the formula

a[p] + κ(a) = i
[p]
Ha

(λ).
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Sketch. Under Ω, λ is dual to a vector field ξ. The condition that dλ = Ω transports to
that ξ − id is a derivation of the Poisson bracket. Then the various restricted quantized
identities for −[p] follow from differentiating the universal identities for L(x,y) and P(x,y)
with respect to ξ. �

Now recall that since the Cartier operators Ci : Fr∗Hi(Ω•X) → ΩiX ′ are defined on the
cohomology sheaves, they define operations on the associated filtration on hypercohomol-
ogy groups, HdR(X).

Theorem 3.10. Let X/k is a symplectic manifold with symplectic form Ω, and let [Ω] ∈ H2dR(X)
denote the image of Ω ∈ H0(H2(Ω•)). If both C2([Ω]) = 0 and C1([Ω]) = 0, then X has a
restricted structure compatible withΩ.

Proof. The condition that C2[Ω] = 0 implies that Ω is locally exact. Let {Uα}α be a cover
such that Ω|Uα = dλα; then {λα − λβ} defines a Čech cohomology class in H1(Ω1X). The
condition that C1[Ω] = 0 is exactly that this class vanishes; that is, after a refinement, we
have (

λα − λβ
)
|Uαβ = dµαβ

for some µαβ ∈ Γ(Uαβ,O). Then i[p]Ha(λα − λβ) = i
[p]
Ha

(dµαβ) = 0. Thus, according to
Lemma 3.9, we may define a restricted structure by

a[p]|Uα = i
[p]
Ha

(λα).

The relation i[p]Ha(λα − λβ) = 0 shows this is well-defined. �

4. LOCAL STRUCTURE OF QUANTIZATION

Definition 4.1. A quantization base is a commutative Artinian local k [[h]]-algebra (B,mB)
with h ∈ mB equipped with a derivation K : B→ B(1) such that K(h) = h.

In the above definition, B(1) is a B-module via the Frobenius map, and thus such a K is
defined by a map K : B→ B(1) satisfying

K(ab) = apK(b) +K(a)bp.

This is equivalent to the data of a restricted structure on B as a quantized algebra with
trivial bracket, by setting b[p] = K(b).

Definition 4.2. A B-quantization of a restricted Poisson k-algebraA is a restricted quantized
flat B-algebra AB equipped with a restricted Poisson isomorphism AB/mBAB → A. A B-
quantization of a restricted Poisson variety X/k is a flat B-algebra sheaf OB equipped with
a restricted Poisson isomorphism OB/mBOB → OX.

In order to produce a quantization as in Theorem 1.2, we will only need to consider
when B = k[h]/(hm+1) for m ≥ 0, equipped with the Frobenius derivation K defined by
K(h) = h. However, the proofs require reducing noncommutative deformations over such
B to commutative deformations over bases Bwhere h = 0.

The local model for a space X/kwhich we wish to quantize will be the Frobenius neigh-
borhood. By definition, for X/k, the Frobenius neighborhood of a point x ∈ X is the space

Spec(OX,x/m[p]
x ) → X,
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where m
[p]
x is the ideal generated by pth powers of elements of mx. If X/k is regular at

the (locally) closed point x, then by the Cohen Structure Theorem, the completion ÔX,x is
isomorphic to k

[[
mx/m2x

]]
.

When X is symplectic, the dimension of the cotangent space at a closed point is even.
For n = dimX/2, the Frobenius neighborhood of a closed point is the spectrum of

AF = k[x1, . . . , xn,y1, . . . ,yn]/(x
p
1 , . . . , xpn,yp1 , . . . ,ypn).

Pulling back the symplectic form of X equips SpecAF with a symplectic form. When X is
symplectic, so that n is even, SpecAF is also equipped with a symplectic form. Our first
step in understanding quantizations of SpecAF is to understand the symplectic forms on
SpecAF, up to isomorphism.

Let Aut(AF) be the group scheme of automorphisms of SpecAF. This is an affine group
scheme over k. Let Aut(AF)0 denote the group subscheme of automorphisms preserv-
ing the maximal ideal (x1, . . . , xn,y1, . . . ,yn). The group Aut(AF) is not reduced, but
Aut(AF)0 is.

Example 4.3. For A = k[x]/xp, Aut(A) = Speck[a0,a±11 ,a2, . . . ,ap−1]/(a
p
0 ). An R-point

(a0, . . . ,ap−1) corresponds to the automorphism of A⊗k R induced by

x 7→ a0 + a1x+ · · ·+ ap−1xp−1.

This preserves the maximal ideal (x) if and only if a0 = 0. Hence

Aut(A)0 = Speck[a±11 ,a2, . . . ,ap−1].

To study quantizations ofAF, we study first a commutative version: we study restricted
Poisson structures on AF ⊗ B where B is an Artinian k-algebra. Suppose B is equipped
with a Frobenius derivation K : B→ B andAF⊗B/B is equipped with a restricted Poisson
structure compatible with K. First define Aut(AF)B = ResB/kAut(AF⊗B) to be the group
of B-linear automorphisms of AF ⊗ B. Then define

GB ⊆ Aut(AF)B GB0 ⊆ Aut(AF)B0
to be the subgroups preserving the restricted Poisson structure.

Theorem 4.4 ([2] Proposition 3.4). Let B/k be a quantization base. Then all nondegenerate
restricted Poisson structures on AF ⊗ B/B compatible with K are isomorphic.

Vague sketch: First, the nondegenerate restricted Poisson structures form an irreducible va-
riety. Then estimate the dimension of the Aut(AF)B-orbit of a structure, using Lemma
3.9 to count the dimension of the space of restricted structures and that the Lie algebra of
Aut(AF)B0 is the Lie algebra of Hamiltonian vector fields on AF ⊗ B. One obtains that the
orbit has codimension zero.

To count dimensions via Lemma 3.9, one needs a version of the Cartier isomorphism for
AF ⊗ B/B, which is not smooth; nonetheless there is a version. �

Theorem 4.5 ([2] Proposition 3.6). Let I ⊆ B→ B0 be a small extension of the quantization base
B0. Let A0 be a quantization of AF over B0. Then all regular quantizations A1 of A0 over B are
isomorphic.

Sketch. The idea of the above Theorem is to reduce to the case when h = 0, and then apply
Theorem 4.4. To reduce to when h = 0, we consider the Baer sum B ′ = B⊕B0 B and for
δ : B → B ′ the diagonal map, B ′′ = B ′/δ(mB). Then B ′′ = B ′/δ(mB) has h = 0, and B ′ =
B⊕k B ′′. Then for A1 and A2 B-quantizations of A0, A1 ⊕A0 A2 is a B ′-quantization of



QUANTIZATION OF SYMPLECTIC MANIFOLDS IN POSITIVE CHARACTERISTIC 7

A0, which reduces to a B ′′-quantizatization, to which we may apply Theorem 4.4. Tracing
through all involved identifications gives A1 ∼= A2 over A0. �

Corollary 4.6 ([2] Corollary 3.7). With notation as in Theorem 4.5, if A1 is a B-quantization of
A0/B0, then Aut(A1) → Aut(A0) is a surjective map of algebraic groups.

Finally, we observe that AF has a Frobenius-constant quantization, related to Example
3.5. Define

D1 = k [[h]] 〈x,y〉/(xp,yp, xy− yx− h),
with splitting s : (D1/hD1)(1) → D1 defined by s(x) = s(y) = 0. Then D = D⊗n1 is a
Frobenius-constant quantization of AF.

5. GLOBAL STORY

To pass from local to global quantizations, we use the technique of formal geometry. The
first step is to construct the bundle of Frobenius frames

MX = “{〈x,ϕ〉 | x ∈ X,ϕ : OX,x → AF étale}”

Recalling that Aut(AF)0 is the group subscheme of Aut(AF) stabilizing the maximal ideal,

Proposition 5.1. MX/ Aut(AF)0 = X andMX/ Aut(AF) = X(1).

Now given a G-torsorM over Y, we have the localization functor

Loc : G−repfd → Coh(OY).
This is the associated bundle construction for the principal G-bundleM. In the context of
principle bundles in flat topology, the construction takes the form of flat descent: given a
flat cover {Ui → Y} such thatM×Y Ui is trivialized,

Loc(M,V)(Ui) = OUi ⊗k V ;
the data of aG-representation on V gives the descent datum. Localization is exact since flat
descent is.

Proposition 5.2. As a sheaf on X(1), Loc(MX,AF) = Fr∗OX, where Fr is the relative Frobenius.

The main idea of Bezrukavnikov and Kaledin’s formal geometry is to restrict the torsor
of Frobenius frames to a torsor over the structure group of a local quantization. Localizing
the (local) quantization of A then gives a localization of the structure sheaf. The formal
statement is as follows:

Definition 5.3 ([2] Definition 4.1). Given a groupGwith a mapG→ Aut(AF), aG-structure
is a G-torsorMG on X(1) equipped with a mapMG →MX over G→ Aut(AF).

Lemma 5.4 ([2] Lemma 4.3). Let AB be a B-quantization of AF, with restricted quantized auto-
morphism group GB. IfMB is a GB-structure, then Loc(MB,AB) is a B-quantization of OX.

Proof. Set OB = Loc(MB,AB). We have identifications mBOB = Loc(MB,mBAB) and
OB/mBOB = Loc(MB,AB/mBAB) since the natural map pulls back to an isomorphism
on a trivializing cover forMB. Since localization is exact, we obtain an exact sequence

0→ mBOB → OB → OB/mBOB → 0.

By the local criterion for flatness, OB is flat over B. The action of GB on AB/mBAB = A

factors through AutA, so we conclude OB/mBOB = Loc(MB,A) ∼= Loc(MX,A). Now
apply Proposition 5.2. �
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The converse to the above also holds [2, Lemma 4.3].
Thus, our problem is to construct GB-structures as B ranges over k[h]/(hn+1) for n ≥ 0.

Given a morphism G ′ → G of groups and a G-torsorMG, a lift ofMG to G ′ is a G ′-torsor
MG ′ and a map MG ′ → MG over G ′ → G. The existence and uniqueness of lifts is
governed by cohomology, according to the work of Giraud.

Theorem 5.5 ([5]). Suppose 1→ H→ G ′ → G→ 1 is a short exact sequence of algebraic groups
over k, and H is abelian. Let MG be a G-torsor on Y. Then the obstruction to lifting MG to a
G ′-torsor is

Loc(MG, c) ∈ H2(Y, Loc(MG,H))

(where H is a G-representation by conjugation by G). If the obstruction vanishes, then lifts are a
torsor over

H1(Y, Loc(MG,H)).

This technique is used in [2] to construct a first-order deformation. However, a first
order deformation may be constructed directly.

Theorem 5.6. If X/k is a symplectic manifold equipped with a restricted structure, then X has a
B = k[h]/h2-quantization given by OB = OX ⊕ hOX with star product

f1 ? f2 = f1f2 +
h

2
{f1, f2},

Poisson bracket from X, and restricted operation

(f+ hg)[p] = f[p] + h(gp + adp−1f (g)).

Proof. It is standard that this star product and Poisson bracket make OB a B-quantization
of OX. Observe that the restricted operation satisfies

(f+ hg)[p] = f[p] + hgp + L(f,hg),

where L is Jacobson’s universal Lie polynomial with respect to the Poisson bracket, and
that in a restricted Poisson algebra, (ha)[p] = hap. As X is restricted symplectic, by The-
orem 4.4, the restricted symplectic structure on the Frobenius neighborhood of a closed
point x ∈ X is isomorphic to the standard restricted symplectic structure. The Frobenius
neighborhood SpecAF with standard structure has a first-order restricted quantization
given by the Moyal product on AF ⊕ hAF. Hence, its p-operation satisfies (f+ hg)[p] =

f[p] + h(gp + adp−1f (g)). Thus, if x ∈ X is a closed point with ideal mx, the required

identities hold in OX,x/m[p]
x . By Nakayama’s Lemma, the required identities hold every-

where. �

Lemma 5.7 ([2] Lemma 3.10). Let I ⊆ B → B0 be a small extension of quantization bases. The
kernel of GB → GB0 is the group scheme

H〈I〉 = ker
[
Fr∗Ω1cl(AF)⊗ I

C−Fr⊗K−−−−−−→ Ω1(AF)⊗ I
]

where K : I→ I is the restriction of the restricted structure of B to I.

Sketch. The kernel of GB → GB0 is the group of transformations of the form id +D where
D : I⊗B AB → AB is a B-derivation. The equations that D must satisfy are transferred
under symplectic duality to the condition that (C1 − Fr⊗ K)(iDΩ) = 0. �
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Example 5.8. Consider B0 = k[h]/(hn), B = k[h]/(hn+1), so that I = (hn)/(hn+1). There
is a unique restricted structure on k[h]/(hm), given by the Frobenius-derivation with K : h 7→ h.
Since K is a Frobenius-derivation, K(hm) = mh(m−1)p+1, so that K(I) = 0 for n ≥ 2. Hence,
for n ≥ 2 we have

H〈I〉 = ker
[
C : Fr∗Ω1cl(AF) → Ω1(AF)

]
.

The localization of this sheaf to X is

ker
[
C : Fr∗Ω1cl(X) → Ω1(X(1))

]
,

which is exactly the sheaf of exact 1-formsΩ1ex on X.

Proof of Theorem 1.2. Let X be a symplectic manifold with symplectic formΩ, satisfying

Fr∗ : Hi(X(1),OX(1)) ∼= Hi(X,OX)
for i = 1, 2, 3, and satisfying C2[Ω] = 0 and C1[Ω] = 0. By Theorem 3.10, X admits
a restricted structure. By Theorem 5.6, X has a first-order restricted quantization, which
defines a Gk[h]/h

2
-structure.

We have the short exact sequence

0→ OX(1) → Fr∗OX → Fr∗Ω1ex → 0,

where Ω1ex is the sheaf of exact 1-forms on X. By the long exact sequence in cohomology,
H2(Ω1ex) = H1(Ω1ex) = 0. By Example 5.8, the obstructions to extending a Gk[h]/h

n
-

structure to a Gk[h]/h
n+1

structure is H2(Ω1ex), and such extensions are a torsor over
H1(Ω1ex).

By Theorem 5.5 and Corollary 4.6, a Gk[h]/h
2
-structure extends uniquely to a Gk[h]/h

n
-

structure for any n ≥ 2. Now apply Lemma 5.4. �
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