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CHAPTER 1

Complex representations of finite groups

1.1. (Sept 05) Introduction. Associative algebras

1.1.1. Prolegomenon. What is representation theory?

DISCIPULUS: What is representation theory?
MAGISTER: Representation theory studies algebraic objects by how they
act on more linear objects. These actions are representations.
Some basic questions of representation theory are:
e What are the irreducible representations? How many of
them are there, and what do they look like?
e How is a general representation composed of irreducible rep-
resentations?
e When the tensor product of representations makes sense,
how does the tensor product behave?
DISCIPULUS: How may I learn representation theory?
MAGISTER: By studing the works of the masters.
DISCIPULUS: Who are the masters of representation theory, and what are
their works?

Historical origins:

e Fourier: Fourier series for periodic functions (1807).

e Dirichlet’s theorem on primes in arithmetic progressions (1837), Dedekind’s
study of the characters of the class group (1879), Frobenius’s introduction
of representations and characters of finite groups (1896). El

e Lie groups (1880s). Killing’s classification of simple Lie groups (1889,
Cartan 1894).

e Associative algebras? Wedderburn (1904)

Frobenius: Characters of the symmetric group (1896). Schur: representations
of the general linear group (1905). Cartan: irreducible reps of ss Lie algebras
(1913). Weyl: complete reducibility, classification of all representations of ss Lie
algebras (1926).

Noether: reformulated Frobenius’ group representations in terms of associative
algebras (1929).

Brauer-Nesbitt: modular characters (1937)

Green: characters of GL,,(F,). (1951)

Borel-Weil, Chevalley, Grothendieck, and others: algebro-geometric methods
(algebraic groups, etc.)

Harish-Chandra: infinite-dimensional unitary representations of real reductive
groups.

ISee [Cur99] for a more detailed discussion of Frobenius and Dedekind’s exchange on this topic.
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2 1. COMPLEX REPRESENTATIONS OF FINITE GROUPS

Bernstein, Harish-Chandra: p-adic reductive groups

Langlands: conjectures on representations of Gg and number theory (L-functions,
reciprocity laws...) (1967)

Deligne-Lusztig: representations of finite groups of Lie type through algebraic
geometry, using étale cohomology (1976-1984).

Kazhdan-Lusztig conjectures: infinite-dimensional representation theory of com-
plex reductive G through algebraic geometry. D-modules. Beilinson-Bernstein the-
orem. (1981)

Beilinson-Drinfeld: Geometric Langlands conjecture (1991).

Some modern topics (slanted towards Lie theory) are:

e infinite-dimensional representations of Lie algebras and Kac-Moody Lie
algebras

e modular representations of algebraic groups

e quantum groups

DISCIPULUS: What will I learn of the masters’ works in this course?

MAGISTER: Our course will focus on two concrete families of groups: the
symmetric groups and the unitary groups. We will learn the
finite-dimensional complex representations of both families of
groups; to do so for the latter requires learning some Lie theory.
We will also learn some modular representation theory, applied
to the symmetric group, in order to have a taste of the non-
semisimple situation.

1.1.2. Associative algebras. See [Lorl8| §1.1.1].

The term ring means associative unital ring: an abelian group A with an
associative, bilinear product - : A x A — A and a multiplicative unit 1 € A. Ring
homomorphisms are assumed to preserve the unit.

DEFINITION 1.1.2.1. If Aisaring, then Z(A) = {z € A| az = za for all a € A}
is the center of A.

DEFINITION 1.1.2.2. Let k be a field. A k-algebra is a ring A and a ring
homomorphism i : K — A such that i(k) C Z(A).

Homomorphisms from a field are injective, so we will view & C A. Left multi-
plication by k makes A into a k-vector space.

Since k C Z(A), the associative product is bilinear: if A € k and a,b € A, then
Aab) = (Aa)b = a(\b).

EXAMPLE 1.1.2.3. i. If X is a set, then k{X} is the algebra of functions

X — k, with operations of pointwise addition and multiplication.

ii. k(X) is the free associative algebra on a set X.

iii. If V' is a k-vector space, then Endg(V) is a k-algebra. If V is finite-
dimensional, choosing a basis for V determines an isomorphism of V with
the algebra M, (k) of n X n matrices with entries in k.

iv. k[X] is the polynomial algebra on generators X.

v. If X is a topological space, C'(X) = {continuous f : X — C} is a C-
algebra.

If A is a k-algebra and a € A, then there is an evaluation homomorphism
Ja : k[t] = A which sends a polynomial p to p(a).



1.1. (SEPT 05) INTRODUCTION. ASSOCIATIVE ALGEBRAS 3

DEFINITION 1.1.2.4. If A is a k-algebra, then a € A is algebraic if there exists
monic p € k[t] such that p(a) = 0.

If a € A is algebraic, then there exists a unique monic generator of ker j,, the
minimal polynomial of a.

LEMMA 1.1.2.5. If a € A is algebraic with minimal polynomial p, and A € k,
then po(A) = 0 if and only if A\ — a is not invertible.

PRrROOF. There exists ¢(t) € k[t] such that p,(\) — pa(t) = q(t)(A — t). Then
pa(A) = q(a)(A — a), so if p,(A) = 0, then A — a is a zero divisor and thus not
invertible. If p,(A\) # 0, then

so A — a is invertible. O
DEFINITION 1.1.2.6. Fora € A, let spec(a) = {\ € k| A—a not invertible in A}.

We have just found that if a € A is algebraic, then spec(a) is the set of roots
in k of the minimal polynomial of a.

A k-algebra is a k-vector space, and thus it makes sense to talk about the
dimension as a k-vector space.

DEFINITION 1.1.2.7. A k-algebra A is nice if

e [ is algebraically closed, and
e dimy A < |k‘|

ExAMPLE 1.1.2.8. Finitely generated associative algebras over C are nice.

ExaMpPLE 1.1.2.9. A = C(GL,(Z,)), the algebra of locally constant complex-
valued functions on GL,(Z,) under convolution, is countable-dimensional over C
and thus nice, but not finitely generated.

THEOREM 1.1.2.10 (Spectral theorem. c.f. [Wal88|, 0.5.1-2). Let A be a nice
k-algebra. Then if a € A:
i. a is nilpotent if and only if spec(a) = {0};
it. a is algebraic if and only if spec(a) is finite and nonempty;
iti. a is not algebraic if and only if |k| = | spec(a)].

In particular, spec(a) # &.

PROOF. 2. and 3. We have already seen in Lemma[Tl.1.2.5] that if a is algebraic,
then spec(a) is the set of roots in k of the minimal polynomial of a. Since k is
algebraically closed, the set of roots of the minimal polynomial is nonempty.

Suppose a € A is not algebraic. Since A is nice, £k = C and dim¢ A is at most
countable. Let
A ¢ spec(a)} € k(1)

We have an evaluation map J, : S, — A which sends (A —#)~"! to (A —a)~!, which
is well-defined since A — a is invertible when X\ ¢ spec(a).

I claim J, is injective: if ), = 0 in A, then a satisfies the polynomial
equation

S, = span{

Ci
)\7‘,—0.

0 = ZC,LH()\J —a),

% VE



4 1. COMPLEX REPRESENTATIONS OF FINITE GROUPS

contradicting that a is not algebraic. Hence,
|k \ spec(a)] = dimg S, < dimg A < |k],

and since k is infinite, |spec(a)| = |k|.

Finally, a is nilpotent if and only if a is algebraic and its minimal polynomial
is t" for some n > 1. As k is algebraically closed, the set of roots of the minimal
polynomial is {0} if and only if the minimal polynomial is of the form ¢™. O

DEFINITION 1.1.2.11. A ring A is a division ring if all nonzero elements are
units.

LEMMA 1.1.2.12 (Dixmier). If A is a nice division k-algebra, then A = k.

PROOF. Suppose a € A\ k. Then a — A ¢ k and so a — X\ # 0 for all X € k,
so a — A is invertible. Thus spec(a) = @, contradicting Theorem [1.1.2.10} Thus
A=k. O

1.1.3. Modules. If M is an abelian group, then End(M) is a ring under
addition and composition. A ring homomorphism A — End(M) is equivalent to a
bilinear function - : A x M — M such that (ab)m = a(bm) for a,b € Aand m € M.

DEFINITION 1.1.3.1. An abelian group M is a left A-module if we are given
A — End(M).

From now on, module means left module unless otherwise indicated. Note that
if A is a k-algebra and M is an A-module, then M is also a k-vector space and A
acts by k-linear operators.

1.2. (Sept 10) Schur’s Lemma. Representations.
1.2.1. Modules [Lorl8, §1.2.1].

DEFINITION 1.2.1.1. A morphism f : M — M’ of A-modules is a map of
abelian groups such that f(am) = af(m) for all a € A and m € M.

If A is a k-algebra, then morphisms of A-modules are k-linear transformations.

LEMMA 1.2.1.2. Let A be a ring.
i. If {M;}; is a family of A-modules, then

G- (T

K2

m; € M;, all but finitely many are zem}

18 an A-module with action
a(z m;) = Z am;.
i i

it. If M is an A-module and M’ C M is a A-submodule, then M/M' is an
A-module. The first isomorphism theorem holds for A-modules.
wi. If f: M — M" is a morphism of A-modules, then the kernel

ker f ={m e M| f(m) =0}

and the cokernel
coker f = M'/f(M)
are A-modules.
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1.2.2. Simple modules. Schur’s Lemma.

DEFINITION 1.2.2.1. An A-module M is cyclic if there exists m € M such that
M = Am. Then m is a generator for M.

Cyclic modules are of the form A/J for a left ideal J C A. The isomorphism
is given by ¢ : A/ kerp — M, ¢(a) = am.

REMARK 1.2.2.2 (Caroline). Note that in general A/J is not a ring, only a left
A-module. A/J is a quotient ring of A if and only if J is a two-sided ideal.

DEFINITION 1.2.2.3. An A-module M is simple if M # 0 and M has no nonzero
proper submodules.

Equivalently, M is simple if M is nonzero and has no nonzero proper quotients.
Every nonzero element of a simple module is a generator. Simple modules are of
the form A/m for a maximal left ideal m C A: submodules of A/J are exactly J'/J
where J' D J is a left ideal.

LEMMA 1.2.2.4 (Schur’s Lemma). Let M and N be simple A-modules. Then a
morphism f : M — N is either zero or an isomorphism.

ProoF. As M is simple, ker f = 0 or ker f = M. In the latter case, f = 0, so
if f is not zero, then f is injective. As N is simple, coker f = 0 or coker f = N. In
the latter case, f = 0, so if f is not zero, then f is surjective. Thus f is zero or an
isomorphism. ([l

COROLLARY 1.2.2.5. If M is a simple A-module, then Ends(M) is a division
ring.

COROLLARY 1.2.2.6 (Schur-Dixmier Lemma). Let A be a nice k-algebra and M
a simple A-module. Then Enda(M) = k and Z(A) acts on m by scalars, that is,
there exists xar : Z(A) — k such that z - m = xp(2)m for 2 € Z(A) and m € M.

PROOF. By Schur’s Lemma, End4 (M) is a division ring. As M is a simple
A-module, M is cyclic, so dim End 4 (M) < dimy M < dimy A. As k is central in A,
k C Enda(M), so Enda(M) is a nice k-algebra. By the Dixmier Lemma [[.1.2.12}
Ends(M) = k. O

COROLLARY 1.2.2.7 (Weak Nullstellensatz over C). Let A = Clzy,...,xzy].
Then the mazimal ideals of A are

m=(T1—21,...,Tn — 2n)
for (z1,...,2,) € C".

PRrROOF. As C is uncountable and algebraically closed, A is nice. Since A is
commutative, A = Z(A). Thus, if M is a simple A-module, there exists xas :
A — C such that a - m = xp(a)m for all a € A. If x is a generator for M, then
M=A -z=C-z, s0 M is one-dimensional. Thus M is of the stated form, where
zi = X (24). g

1.2.3. Representations and the group algebra. Let G be a finite group.

DEFINITION 1.2.3.1. If k is a field, a representation of G over k is a k-vector
space V and a k-linear action G x V' — V such that 1-v = v for v € V and
(gh)v = g(hv) for all g,h € G and v € V.
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A representation is equivalent to a homomorphism G — GL(V).

DEFINITION 1.2.3.2. If G is a finite group and k is a field, the group algebra
kG is the k-algebra with basis G and multiplication

() () oe

LEMMA 1.2.3.3 ([Lorl8|, §3.1.1). If A is a k-algebra, then
{k-algebra homomorphisms kG — A} = {group homomorphisms G — A*}.

Proor. If kG — A is a homomorphism, then the image of G is contained
in A%, so by restricting we obtain a morphism G — A*. Conversely, a map
1 : G — A* can be extended uniquely to a linear map kG — A. This map will be
a ring homomorphism by definition of the product on kG. O

It follows that

{representations of G on V} = {G — GL(V)}|
~ (kG — End(V)}
& {left kG-module structures on V'}.

Thus, theorems on associative algebras can be applied to the group ring to learn
about representations.

EXAMPLE 1.2.3.4. For all finite groups G, G acts by left multiplication on kG.
This representation is the regular representation.

ExaMpPLE 1.2.3.5. Let V be a n-dimensional vector space over k with basis
€1,...,€n, and let the symmetric group X, act on V by permuting eq,...,e,. V is
not simple since k- (e; +- - -+e,) is invariant under 3,,, and W = {c1e1+- - -+cpen |
> ¢i = 0} is invariant under ¥,,. If char k { n, then

V=Wak (e14+en),

but if chark | n, then e; +--- + e, € W. Then V is not a direct sum of W and k
as representations.

ExAMPLE 1.2.3.6. If V and V' are representations of a finite group G, then:
i. V@ V' is a representation G with g(v ® v') = gv ® gv';
ii. Homyg(V, V") is a representation of G by act(g)(f) = gfg~".

1.2.4. Maschke’s theorem. [Ser78, §1.3]

THEOREM 1.2.4.1. Suppose k is a field and G is a finite group with char k 1 |G]|.
Let V be a representation of G over k and U C V be a subrepresentation. Then
there exists a subrepresentation W C 'V such that V. =U @& W.

PrOOF. By extending a basis of U to a basis of V, we may construct a linear
map 7 : V — U such that 7(u) = u for all u € U. Now let

1 L
:@Zgﬂg L.y 5 U
geG

™
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The map 7 is G-linear since

hrh™! hgrg th™! = grg~t =m.
IGI 2 IGI 2

9€qG g€eG
Further,
Ty = |G| ZgldUg '=idy.
geG
Thus W = ker 7 is a complementary subrepresentation to U C V. (]

COROLLARY 1.2.4.2. Let k be a field and G be a finite group with chark {
|G|. Then every finite-dimensional representation of G is a direct sum of simple
representations.

PROOF. Induct on the dimension of V. Either V is simple, or V has a proper
nonzero submodule W. By Maschke’s theorem, V= W @ U for some submodule
U C V. By induction, V is a direct sum of simple representations. O

1.3. (Sept 12) Characters

EXAMPLE 1.3.0.1. Finite abelian group A: assume n = |A| is invertible and
k is algebraically closed. Each operator has minimal polynomial dividing ™ — 1.
As %x" — 1 =n2"""! and n is invertible, 2™ — 1 has distinct roots, is diagonaliz-
able, so by homework, the action of A is simultaneously diagonalizable. Thus, a
representation of A is a direct sum of one-dimensional representations.

1.3.1. Characters. In light of Maschke’s theorem, to find all the finite-dimensional
representations of a finite group, it suffices to find the simple ones. To do so, we
will introduce group characters.

From now on, assume k is an algebraically closed field of characteristic zero

(k=0C).

Recall the trace tr(A) of a matrix A is the sum of its diagonal entries. The trace
satisfies tr(AB) = tr(BA) whenever AB and BA are both defined. The trace of a
linear endomorphism f : V' — V of a finite-dimensional vector space V is defined
to be tr(f) = tr(A) whenever A is a matrix for f. As tr(PAP™!) = tr(P71PA) =
tr(A), this is well-defined.

More intrinsically, if V' and W are vector spaces, then there is a map

W @ V* — Homy (V, W)
w f—=wf.
This map is an isomorphism if W or V is finite-dimensional. Thus, if V is a finite-
dimensional vector space, then Endg (V) =2 V ® V*, and the trace is defined as
tr:End,(V)2XVQV* 2V @V =k
where ev : V* @V — k sends f @ v — f(v).

DEerFINITION 1.3.1.1. If G is a finite group and V is a finite-dimensional repre-
sentation of G, the character of V' is the function

XV : G—k
xv(9) = tr(acty(g)).



8 1. COMPLEX REPRESENTATIONS OF FINITE GROUPS

The character is a class function on G: xv(hgh™) = xv(g) for all g,h € G.
You might ask:

What is the meaning of the trace? Why does it occur in repre-
sentation theory?

I will attempt to give a few answers over the course of the semester.
DEFINITION 1.3.1.2. If A is a ring and e € A, then e is idempotent if e? = e.

LEMMA 1.3.1.3. Let f : V — V and ' : V' — V' be endomorphisms of finite-
dimensional vector spaces. Then
i tr(f @ f') = tr(f) + tr(f);
ii. tr(f @ f') = tr(f) tr(f');
iti. tr(f*) =tr(f) where f*: V* = V* is the adjoint of f.
. the endomorphism T — f'Tf of Hom(V, V') has trace tr(f)tr(f’).
v. if X2V — V is scalar multiplication by A € k, then tr(\) = Adim(V);
vi. ife: V — V is alinear idempotent transformation, then tr(e) = rank(e) =
dimim(e).

PROOF. i. If A and A’ are matrices for f and f’, then the block diagonal
matrix diag(4, A’) is a matrix for f ¢ f'.
ii. If A and A’ are matrices for f and f’, then

allA’ algA/
aglA/ CLQQA/

is a matrix for f @ f’. Thus tr(f @ f') =3, a; tr(A") = tr(f) tr(f').

iii. If A is a matrix for f, then A! is a matrix for f*.

iv. Combine ii., iii., and the observation Hom(V, V') 2 V' @ V*.

v. The trace of the identity matrix is the dimension of the vector space.

vi. If e is idempotent, then V' = ker(e)®im(e). For each v € V can be written
in the form v = (1 — e)v + ev, and e(1 — e)v = (e — e?)v = 0. Further, if
v € ker(e) Nim(e), then v = ew and 0 = ev = €?w = ew = v.

Now e is the identity on im(e) and zero on kere. It follows

(€)= treliere)) + tr(clm() = dim im(e). O

We are now in [Ser78| §2.3].

DEFINITION 1.3.1.4. If V is a representation of G, the space of invariants is
C={veV|gv=uvforall gc G}

THEOREM 1.3.1.5. Let G be a finite group.

i. Let' V be a finite-dimensional representation of G. Then
dimy, 745 e Z xv (g
e =

it. Let V and V' be two ﬁnite—dimensional representations of G. Then

dimy, Homyg(V, V') |G| Z xv (g XV’ (9)-
geG
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PROOF. . Lete = |G, Yyec 9 € kG Ith € G, thenhe = 4230 hg
ﬁ decg =e. Thus e? = e, so e is idempotent. As he = e for all h € G,
the image of e is invariant; if v € V¢ then ev = |—Cl;‘ deGv = v. Thus
ime = V¢, By Lemma|[1.3.1.3
1
dimy, VE = tr(e) = @XV(Q)'

ii. Consider the G-representation Homy,(V, V') where g acts by T +— gTg~!
By Lemma [1.3.1.3] the character of Homy(V,V”) is
9= xv(g™xv(9)-
The space of invariants Homy, (V, V') is equal to Homg (V, V’): both are

the space of linear maps T : V' — V' such that ¢T' = Tg for all g € G.
Hence part i. gives

dim Homy (V, V') = dim Homy, (V, V') = 1@ G| Z xv (g™ xv (9)- O
geG

DEFINITION 1.3.1.6. Define the product on functions on G by

N
(6 x) |G|ZX

geqG

Most of the time, we will restrict our attention to class functions, but this is
not essential to the definition. The product is a nondegenerate symmetric bilinear
form on functions on GG, and restricts to a nondegenerate form on the space of class
functions. Theorem says

(xv,xv') = dimy Homgg(V,V").
LEMMA 1.3.1.7 (Schur’s lemma for characters). Let V and V' be representations
of G. Then
1 vV

xv,xv) = {0 VeV,

Note that we are using k = k here.

PRrROOF. By Schur’s lemma, either Homyg(V, V') is zero or V is isomorphic to
V'. As k is algebraically closed, kG is nice, so the Dixmier-Schur Lemma [1.2.2.6
gives Homyq(V, V') = k. O

COROLLARY 1.3.1.8. The set of characters of simple representations is linearly
independent.

COROLLARY 1.3.1.9. If two finite-dimensional representations V and V' of a
finite group G have the same character, then V =2 V',

PRrOOF. Let {L;};cs be a set of representatives of isomorphism classes of simple
representations of G. By Maschke’s theorem [1.2.4.2] we may write V = @, ¢;L;
and V' = @ c;L;. Then xy = xy+ implies

Z CiXL; = Z C;;XLi :
[ [

Since {xr,} is linearly independent, we find ¢; = ¢} for all ¢ and thus V= V'. O
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Note that we used that k has characteristic zero to recover the integers ¢; and
¢} from their images in k.

1.4. (Sept 17) The number of simples. New representations from old
1.4.1. The number of simple representations. [Ser78| §2.4]

THEOREM 1.4.1.1. The characters of simple complex representations of G form
an orthonormal basis for the space of class functions on G. The number of isomor-
phism classes of simple representations of G is equal to the number of conjugacy
classes.

ProOF. Let Cl(G) be the space of complex class functions on G. It suffices to
show that for f € CI(G), if (f,x) = 0 for all simple characters x, then f = 0.
Given such an f, define

2= flg ")y €CG.
geG
Since f is a class function,
hzh™ =" (g hgh™ =Y f(h'gh)g = 2,
geG geG

so z € Z(CG). By Schur-Dixmier Lemma [1.2.2.6] z acts as a scalar Ay on an
simple representation V. That scalar satisfies

Avdimp Vo=tr(z: V= V) =Y flg " )xvig) = (fixv).
geG

Thus Ay = 0 for all simple V.
Thus z acts as zero on every simple representation. Since the regular rep-
resentation CG is a sum of simples, we conclude z acts as zero on the regular

representation. However, z -1 = z € CG, so z acts as zero on CG if and only if
z=0. Thus f =0, as desired. O

The regular representation played a crucial role in this proof. It’s worth record-
ing how the regular representation decomposes:

LEMMA 1.4.1.2. As a left CG-module,
CG = b ok

simple complex L

Proor. If CG = @, L®°r, then by Schur’s lemma, ¢;, = dimec Home e (CG, L).
But
HomCG(CG, L) ~J,
as a vector space by f+— f(1). Thus ¢;, = dim L, as desired. O

COROLLARY 1.4.1.3. If{L;};c1 are representatives of the simple modules of G,
then
Y dim(L;)* = |G].
i

Using Theorem [[.4.11] and Corollary [[.4.1.3] you can play “character table
sudoku” to compute character tables. Here is a useful lemma for this game:
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LEMMA 1.4.1.4. If V is a finite-dimensional complex representation of finite
G, then V is simple if and only if {xv,xv) = 1.

PrOOF. If V =@, LY, then
(xvoxv) =Y cici(XL,xL,) = Y. O
1,7 7

ExaMPLE 1.4.1.5. Let G = ¥3. Note that X3 has three conjugacy classes:
id, (12),(123). We know two one-dimensional representations of ¥3: the trivial
and sign characters. The equations {Xtriv, X, =)0 and (Xait, X, =)0 for the third
character give x(1,2) = 0 and x(1) 4+ 2x(1,2,3) = 0. This determines x up to a
scalar multiple. That scalar is pinned down by the relation y(1)? + 1+ 1= 6. We
have computed the character table.

id [ (12) [ (123)
triv | 1 1 1
alt | 1 -1 1
x | 2] 0 1

What is the associated representation to x? I claim it is the character of the
permutation representation

W = {(z1,22,23) | ©1 + 2 + x3 = 0}.
This can be checked as follows: W @ C(1,1,1) = C3, and C? has character
Yo (id) = 3, ver (1,2) = 1, xeo(123) = 0.
So Xw = Xc3 — Xtriv = X-

1.4.2. Products. [Ser78, §3.2] If V is a representation of G and W is a rep-
resentation of H, then V ® W is a representation of G x H by

(g,h)(v®@w) = gv® hw

LEMMA 1.4.2.1. Let G and H be finite groups. If V. and W are simple complex

representations of G and H, then V ® W is a simple complex representation of
Gx H.

PrOOF. The character of xygw is by Lemma [[.3.1.3

xvew (g, h) = xv(g)xw (h).
By Lemma [1.4.1.4] it suffies to show (xvew, xvew) = 1. But

1 — —
(Xvew, Xxvew)exH = G ] Z xv (9™ Hxw (R Hxv (9)xw (h)
g€G,heH
= xv,xv)cOxow, xw)m = 1. O

THEOREM 1.4.2.2. The simple complex representations of G X H are exactly
the tensor products of simples for G and H.

PROOF. They are simple by Lemma[T.4.2.1] By comparing characters, VW =
V'@ W over G x H if and only if V = V' and W = W’. The number of such
representations is the product of the number of conjugacy classes of G and of H,
which is the number of conjugacy classes of G x H. By Theorem [[.4.1.1] we have
found all of the irreducible complex representations. [
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1.4.3. Restriction, Induction, Coinduction. In this section, k is an ar-
bitrary field. Let G be a group and H C G be a subgroup. Then there is the
functor

Res% : Rep(G) — Rep(H)
which sends a G-representation V to V, viewed as a representation of H. This is a
functor since if f : V — W is G-linear, it is also H-linear when we restrict to H.
The functor Resfl has a left adjoint, induction

Ind$ : Rep(H) — Rep(Q),
in the sense that
Homy(Ind$ V, W) 2 Homy ;7 (V, Res§ W),

and this isomorphism is natural in V' and W.

The construction of Indg involves the tensor product, not over k, but over
other rings. If A — B is a morphism of rings and M is a left A-module, then we
can form

B@aM=BoM/{baegm-bam|ac Abec B,me M.}.

Note that B® 4 M is a B-module by left multiplication by B (the left action doesn’t
know what the right A-action is doing).

LEMMA 1.4.3.1 (|Lorl8|, 1.2.2). If A — B is a ring homomorphism, M is an
A-module, and N is a B-module, then

Homp(B®4 M,N) = Homa (M, N)
where we view N as an A-module via A — B.
Proor. For
Homp(B®s M,N)={f:Bx M — N |f is bilinear,
f(ba,m) = f(b,am) for all a € A,
and f(bx,m) =0bf(x,m).}

Such amap f : BxM — N is determined by f(1,—) : M — N,and f : BXxM — N
is balanced with respect to A if and only if f(1,—) is A-linear. O

DEFINITION 1.4.3.2. If V is a G-representation over k, then the induced repre-
sentation Indg V=kGRrugV.

Note that kG = @UeG/H okH as a right kH-module, so as a vector space,
mdG V= @ ockHew V= P oV.
c€G/H ceG/H

In particular, dim Indg V =[G : H|dimV when one side of the equality is finite.
The functor Resg also has a right adjoint
Coind$ : Rep(H) — Rep(G),
given by
Coind$ (W) = Homy g (kG, W),
where G acts on Homy g (kG, W) as follows: if f: kG — W, then
(- (@) = flzg).

Exercise!: check that this defines an action of G.
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LEMMA 1.4.3.3 (|Lorl8|, 1.2.2). If A — B is a ring homomorphism, M is an

A-module, and N is a B-module, then
Hom (N, M) = Homp(N, Hom (B, M)),

where Hom 4 (B, M) is viewed as a left B-module by b- f(b') = f(b'b).

Proor. Skipped. The map sends h : Hom 4 (N, M) to h:N — Hom 4 (B, M)
by h(n)(b) = bh(n). O

Since kG = @, ¢ kHo as a left kH-module,

Coindf (W)= [ Weo
oc€H\G

as a vector space.

1.5. (Sept 19) Mackey theorem
1.5.1. Comparing induction and coinduction.

THEOREM 1.5.1.1 (|Lorl18|, Proposition 3.4). If [G : H] is finite, then there is
a natural isomorphism Tnd$, W =2 Coind$ W for W € Rep(H).

ProoOF. Let 7: kG — kH by
0 g¢ H
m(g) = :
g g€ H
Then n(hg) = hw(g) and w(gh) = 7(g)h for h € H and g € G. Thus 7 defines a

- W = Homy g (kH, W) — Homyz (kG, W) = Res$ Coind$ W.
By adjunction we obtain
¢ : Ind§ W — Coind$ W.
Check that at the level of vector spaces, ¢ is given by
@ oW — H Wo
ceG/H ceH\G
by sending ¢ W isomorphically to Wo 1. O
In the context of finite-dimensional complex representations of finite groups,

we will thus refer to just the induction functor, and use that it is both left and
right adjoint.

1.5.2. Character formula for the induced representaiton. If y is a char-
acter of H, let Indfl x be the character of the induced representation.

LEMMA 1.5.2.1. If & is a coset representative for each o € G/H,
~_1 ~ ~_1 ~
x(67'go) o 'goe H
df x(g) = Yo X797 700
oeGIH 0 'go ¢ H.

Note that each term in the sum above does not depend on the choice of coset
representative.
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PROOF. Let W be a representation with character x. Then Ind§ W = Docc/moW.
An element g € G takes oW to goW. Thus a matrix for g acting on Indg W will be
a block matrix, with blocks corresponding to the action of g on G/H. The diagonal
blocks are those o where go = o, in which case g acts by
gow = (6 go)w
when & is a coset representative for . Thus

tr(g; Ind$ W) = Z tr(g;oW) = Z x(671g5). O
c€G/Hgo=0c c€G/Hgo=0

THEOREM 1.5.2.2 (Frobenius reciprocity). For two complex characters x and
v,
(Ind x, ¥)a = (x, Resf ) ur.

PRrROOF. Let x be the character of W and 1) be the character of V. By Theorem
1.3.1.5] these products compute the dimension of

Homee(Ind$ W, V) = Home g (W, Res$ V). O
1.5.3. Examples of induced representation.

ExampLE 1.5.3.1. If X is a set with G-action, define kX to be the free vector
space on X. Then kX is a G-representation given by linearizing the action of G on
X.

If X 2 G/H is transitive, then

k(G/H) = kG @y k = Ind$§ ,
where we view k as a trivial H-representation. Thus every linearized set represen-

tation is a direct sum of induced representations.

EXAMPLE 1.5.3.2. X3 acting on C? is induced from the trivial representation
of ¥o C 33, the stabilizer of (0,0, 1).

1.5.4. Mackey theorem. [Ser78, §7.3]. The Mackey theorem describes the
effect of inducing up, then restricting down.

THEOREM 1.5.4.1 (Mackey). Let G be a group and H,K be two subgroups of
G. Let W be a representation of H over a field k and p: H — GL(W) the action.
Then
Resfi Ind W= @ Indjy W,
seK\G/H
where Hy = K N3H3~' for some fized representative 5 of s, and W, is the repre-
sentation of Hy defined by p*(h) = p(371h3).

PROOF. Note Ind% W = Doecc/moW, andif k € K, then k- oW C (k- o)W
Thus, if s € K\G/H, let
Vis) = @ oW,
oc€G/H,0Cs
then KV (s) C V(s), so
Resfy Indf; W = @5 V(s).
seK\G/H
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Now let § € G be a representative for the double coset s. If h € H,, then 5 'hs € H
by definition of H,. Thus h3W = 5(37'h3)W C sW. Note sW = W, as a H,-
representation by definition. There is a bijection K/H; = {0 € G/H | 0 C s} of
left K-sets sending 1 to K'5H. So V(s) = @,c, oW = D¢ p, v5W. This is the

induced representation Indgs Ws. The proof is complete. (]
Here is an example application of the Mackey theorem.

COROLLARY 1.5.4.2. If H C G is a subgroup of a finite group, then for W a
complex f.d. representation of G, Indg W s irreducible if and only if

i. W is irreducible, and
it. forallse G—H, Wy and Resg, W are disjoint representations of Hy =
HnNsHs™ !,

PrRoOOF. The induced representation is irreducible when

Homcg (Ind$ W, Ind$ W) = C.

But
Homce(Indf; W, Indg W) = Home g (W, Res§; Indf; W) = Homen (W, €D Indj,
ceG/H
Thus we require Homggy (W, W) = C and for s € G — H,
0 = Homcp (W, Indj; W) = Homc, (Resy, W, Ws). O

You can use this criterion to analyze representations of the semidirect product
of groups. See for example [Ser78, §8.2].

1.6. (Sept 24) Density theorem

1.6.1. Decomposition of the regular representation. Density theo-
rem. Note that CG actually has two actions of G: left multiplication by G and
right multiplication by G. Thus CG is a representation not of G, but of G x G
with action (g,h) - x = grh~!. How does CG decompose into representations of
G x GG. Furthermore, CG is not just a representation but an an algebra. What is
the algebra structure?

THEOREM 1.6.1.1 (Density theorem. [Ser78|, §6.2). Let {L;} be a set of iso-
morphism classes of simple complex representations of G. Then the action map

act : CG — [ [ Endc(L;)

is an isomorphism of C-algebras.
COROLLARY 1.6.1.2 (Peter-Weyl theorem). As representations of G x G,
cG= [] Leor
simple L
and

{functions G — C} = @ L*® L.

simple L

Note that L ® L* is a simple representation of G x G by Lemma [[.4:2.1]
To prove the density theorem, we need to construct certain functions on G.
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DEFINITION 1.6.1.3. A matriz entry of a representation V over k is a function
my, : G — k depending on f € V* and v € V, defined by

mys.(g) = fgv).

LEMMA 1.6.1.4. Let V and V' be simple representations of G over a charac-
teristic zero field k. Letv eV, fe V* o e V' f' € (V')*. Then

< yUI > / £ 12 ‘7 ‘r
“l’f v ”lf U (U) (’U ) /.
I ROOF. ObSGI ve

1 _
<mf,v7mf’,v |G| Zf g'U 11},) :f @ngf/g ! U/
9eG geqG
Now y = ﬁgvf’g’1 is a G-invariant operator V' — V. If V.2 V'’ then y = 0,
which shows the first equation of the Lemma. Thus we can assume V = V'. Thus
y is a scalar operator V' — V acting by X tr(y). But tr(y) = tr(vf’) = f'(v).
Hence

<mf,v7mf’,v’> :f(yvl) dif( )f( ) U

If one takes v ranging through a basis of V and f ranging through a dual basis,
one finds that these matrix entries are orthogonal.

Proor oF THEOREM [LL6.1.1l To show act is surjective, it suffices to show
that act* : @, Endc(L;)* — CG* is injective. However,

Ende(L)* = (L® L*)* = L* ® L.

The pure tensor f ® v € L* ® L corresponds to the linear function T' — fTv in
Endc(L)*. Thus Endc(L;)* has a basis of the form T' — fTv where f € L} and
v € L; run through bases. Now act*(T — fTv) = myy is the matrix entry for
(f,v). By Lemmal[L.6.1.4] the images of Endc(L;)* are orthogonal, so it suffices to
show act* : Endc(L)* — CG* is injective for all simple representations L.

If we pick a basis {e1,...,e,} for L and a dual basis {f1,...,e,} for L*, and
set mi; =My, e,

1 . .
(mij, mpe) = {dimL P=tandj=k
0 else.
Thus {m; ;} is linearly independent in CG*. But {m; ;} is the image of the basis
fi®ej € L* ® L = (Endc(L))*. Thus act* is injective.
By Corollary dim CG = Y, dimc(L;)?, so the surjective map act :
CG — @, Endc(L;) is an isomorphism. O

1.6.2. Central idempotents. The isomorphism CG =[], Endc(L) implies
that Z(CG) =[], C. Thus, for each simple L, there exists e, € Z(CG) such that
er acts as the identity on L and zero on simple L’ 2 L.

LEMMA 1.6.2.1.

dim L
geG

acts as the identity on L and as zero on L' % L.
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PROOF. Let zj, = % geca Xr(g™")g. Since xp, is a class function, 2y, €
Z(CG). Then
dim L _ .
tr(er: 1) = SEr D0 xele™ xe(9) = dim Lz, xi)

geG
By Schur-Dixmier lemma [1.2.2.6} 27, acts as the scalar (dim L)~ tr(zz; L') on L'.
Thus zy, acts by 1 on L and 0 on L' 2 L. O

1.6.3. Isotypic components.

DEFINITION 1.6.3.1. If G is a finite group, V is a complex representation of
G, and L is a simple complex representation of G, the L-isotypic component of V,
written Vz, is the sum of all subrepresentations of V' isomorphic to L.

The isotypic component V7, is entirely canonical. If we have already decomposed
V' into simple representations, then Vi is just the direct sum of those simples
isomorphic to L. Also, Vi, = e V.

1.7. (Sept 26) Double density theorem

1.7.1. Remarks on density theorem without coordinates. If V and W
are finite-dimensional vector spaces over a field k, then

Hom(V,W)* = (W@ V*)* =W*®V 2V ® W* = Hom(W, V).
Thus there is a duality pairing
Hom(V, W) x Hom(W,V) — k.

This pairing is A, B — tr(AB). (This is a nice exercise in the coordinate-free
definition of trace and matrix multiplication.)

Thus, if L is a simple complex G-representation and A € (Endc(L))* =
Endc (L), the resulting act*A € (CG)* is the function g — tr(gA;L). If A = ovf
corresponds to the rank one tensor f ® v € L* ® L, then

tr(guf) = tr(fgv) = f(gv) = my.(9)

by the cyclic property of the trace, so this definition extends our definition of matrix
entries earlier.

The orthogonality Lemma may be generalized as follows:
LEMMA 1.7.1.1. If L is a simple G-representation, then for A, B € Endc(L),

(act* A, act*B) = tr(AB).

dim L

Thus act* : Endc(L)* — (CG)* is injective because it is a scalar multiple of an
isometry. This allows you to finish the proof of the density theorem [I.6.1.1] without
coordinates.

1.7.2. Double density theorem.

THEOREM 1.7.2.1 (Double deusity). Let G be a finite group, V a finite-dimensional
complex representation of G, and A = Endcg (V) C Endc(V). Then:
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i. there is a natural direct sum decomposition
V= Homce(LV)®L
L simple G-rep
of V into simple A @c CG-modules.

1. The action map

A — [ [ Endc(Homee(L, V)
L

s an isomorphism.
iti. (Double centralizer property) End (V) is equal to the image of CG in
Ende (V).

There is always a map from CG into the centralizer of the centralizer of CG:
G commutes with all operators which commute with G. Thus we have a map
CG — End(V), and the last part of the theorem says this map is surjective.

LEMMA 1.7.2.2. Let V and W be finite-dimensional vector spaces over a field
k, and let B = Endg (V). Then B acts on V @ W, and

Endp(V @ W) = End,(W).
PRrROOF. First observe that A and B commute, for if a € A and b € B,
ab(v @ w) = bv @ aw = ba(v @ w).

Thus we find a map Endy (W) — Endg(V ® W). To check that this map is an
isomorphism, pick a basis {e1, ..., e,} for W. Then Endy (W) is identified with the
matrix ring M, (k). Further,

V@WZV@ék‘ei:éV.
=1

i=1
Hence
Endp(V @ W) = Homg(P V. V) = @ P Homp(V, V) = M, (k)
i=1 j=1 i=1 j=1

since Homp(V, V) = k. Under these identifications the map End, (W) — Endp(V®
W) is identified with the identity M, (k) — M, (k). Thus this map is an isomor-
phism. ([

ProOF. Note that Homgg (L, V) is an A-module as follows: if f: L — V is
G-linear and a € A, then af : L — V is also G-linear since gaf = agf = afg. First
we prove that V' decomposes as a direct sum above. Consider the map

evy, : Homeg(L,V)®@ L =V
fl— f(L).
Note that evy, is A ® CG-linear, since
evp(a®g)(f @) =af(gl) = agf(l) = (a ® g)evr(f @ £).

Taking the direct sum over isomorphism classes of simple L gives a map

Pev. : PHomea(L, V)R L -V
L L
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of A® CG-modules. I claim €, evy, is an isomorphism. Since V' is a direct sum
of simples and both sides are linear with respect to direct sum, it suffices to show
that this map is an isomorphism for simple L’ 2 V. Then Homgcg(L, L) is either
0 or C by Schur’s Lemma [1.2.2.6] so our map is

@HomCG(L,L’) ® L =Homeg(L, L)@ L=C®L=L— L.
L

The map is an isomorphism.

Thus

V=@ Homca(LV)®L
L simple G-rep

as A ® CG-modules.

Now we prove ii. Since A acts on Homgg (L, V) for all L, we obtain an action
map

A — [ [ Endc(Homee(L, V).
L

We want to show that this action map is an isomorphism. By the Density Theorem
CG =[], Endc(L) as C-algebras. As Homge (L, L) = 0 for disinct simple
L and I/,

(1) A =Endce(V) = @D Endce(Homee (L, V) @ L).
L

By the density theorem, CG — End¢ L is surjective. Thus by Lemma [1.7.2.2
EndCG(HOmcg(L, V)@L) = Endgndg L(HOchg(L, V)®L) = End¢ (Homcg(L, V))

Thus the isomorphism is the action map A — [[; Endc(Homce (L, V)).
We have proved ii. Further we find Homgg (L, V) ® L is a simple A ® CG-module,
finishing i.

Finally, since A is the product of matrix algebras, we find symmetrically

Ends(V) = D End s (Homea(L, V) ® L) = P Endg(L).
L appearing in V' L appearing in V'
By the Density Theorem|1.6.1.1} CG surjects onto [[; ., earing in v Endc (L), prov-
ing iii. O

REMARK 1.7.2.3. We have found a coordinate-independent formula for the
isotypic component of V:

Vi & Homcg(L, V) ® L.
1.7.3. The Symmetric Group.
DEFINITION 1.7.3.1. The symmetric group ¥, is the group of permutations of
n letters {1,2,...,n}.

The inclusion {1,2,...,n—1} — {1,2,...,n} gives an injective homomorphism
Yn—1 — Xy. The image of this homomorphism is the stabilizer of n. Our approach
to the complex representation theory of ¥, is to consider the chain of subgroups

¥ C¥pC¥3C -
Given this chain, we can study a representation of 3, by studying how it restricts

to these subgroups. Dually, we want to build up representations of 3, by studying
induced modules from these subgroups.
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1.8. (Oct 01) Simple branching and the symmetric group
1.8.1. Simple branching. We are now following [VO04, §1].

DEFINITION 1.8.1.1. A pair (G, H) of a group G and a subgroup H C G has
simple branching if for all simple representations V' of GG, the restriction Resg Vis
a direct sum of simple H-representations with multiplicity one.

A pair (G, H) having simple branching is also known in the literature as a
strong Gelfand pair.

EXAMPLE 1.8.1.2. Consider X5 C ¥3. The restriction of one-dimensional rep-
resentatioins are one-dimensional and so trivially have multiplicity one. The other
character x has x|z, = x1 + Xait- Thus 3 C 33 has simple branching.

EXAMPLE 1.8.1.3. When does 1 C G have simple branching? There is only
one simple representation of 1, so (G, 1) has simple branching if and only if every
simple representation has dimension 1. This occurs only when G is abelian.

THEOREM 1.8.1.4 ([VOO04], Proposition 1.4). (G, H) has simple branching if
and only if the centralizer

Z(G,H) ={x € CG | hz = zh for allh € H}
s commautative.

ProOF. By Theorem [1.6.1.1, CG =[], Endc(L) over simples L. Thus

Z(G,H) = [ [ Endcn (Res§; L).
L
By Theorem [1.7.2.1]

Endcy(Resi L) = [  Endc(Homep (L', Resf L)),
L’simple for H

a product of matrix algebras of size ¢x ¢ where ¢ ranges over dimc Home g (L, Resg L).
Thus Z(G, H) is commutative if and only if dimc Homey (L', Res$ L) < 1 for all
simple H-representations L’ and all simple G-representations L, i.e. if and only if
(G, H) has simple branching. O

LEmMA 1.8.1.5 ([VOO04], §2). If (G, H) is a pair such that each element g € G
is conjugate to its inverse by an element h € H, then (G, H) has simple branching.

PROOF. Let S : CG — CG be the antipode map
grrg

Since (gh)™! = h=1g~! for g,h € G, the map S is a ring anti-automorphism, i.e.
S(zxy) = S(y)S(z). Since S preserves CH, it also preserves its centralizer Z (G, H).
Now let = Y, ¢,9 be in Z(G, H). Suppose that hgh™! = ¢! for h € H. Then
hg='h~! = g, and conjugation by h permutes the other elements appearing in z.
But hah™! = z, so the coefficients of ¢ and ¢g_; in z are equal: cg = cg-1. It
follows that S(z) = x for x € Z(G, H). Since S is a ring anti-automorphism and
the identity, we find xy = S(zy) = S(y)S(z) = yx for all z,y € Z(G, H), that is,
Z(G, H) is commutative. Now apply Theorem O

THEOREM 1.8.1.6. (X,,%,_1) has simple branching for all n > 1.
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PRrROOF. Two elements of ¥, are conjugate if they have the same cycle type.
Note n appears in a cycle of the same length in ¢ and o~!. Thus we can pick an
element conjugating o to ¢~ ! which fixes n, that is, lies in ¥,,_;.

Thus Lemma [1.8.1.5] applies, and (£, 2,,—1) has simple branching. O

DEFINITION 1.8.1.7. The nth Gelfand-Tsetlin algebra is
GZ(n) =(Z(C%;) | i <n).

THEOREM 1.8.1.8. GZ(n) acts simultaneously diagonalizably on every repre-
sentation of ¥y,. Fach simultaneous eigenspace is one-dimensional.

PROOF. Since (¥;,%;_1) has simple branching for all i > 1, the restriction
of a simple CX;-module V decomposes canonically into simple modules. So if
V is a simple X, -representation, applying this decomposition canonically gives a

decomposition
v-@or
T

into simple Xj-representations Cr indexed by tuples T = (L1, Lo, ... L,—1) where
L; 1 is a simple constituent of Reszj_1 L; for all i < n (taking the convention
L, =V). Since ¥; = {1}, Cr is a one-dimensional vector space.

As Z(CX;) acts by scalars on every simple L;-module, we see Crp is stable
under GZ(n). Further, if T # T, then for some %, the simple constituents for 3;
in T and T” are different. Thus Z(CX;) acts by different scalars on C and Cr.
Thus {Cr} is the set of simultaneous eigenspaces, all one-dimensional. O

DEFINITION 1.8.1.9. A Gelfand-Tsetlin basis is a basis of simultaneous eigen-
vectors for GZ(n).

LEMMA 1.8.1.10. Let V be a simple representation of ¥,. If (—,—) is an
inwvariant Hermitian form on V| then a Gelfand-Tsetlin basis for V is orthogonal.

PROOF. Suppose V is a simple ¥,,-representation. By simple branching (The-
orem , Resy, , V = @, L; where L; are distinct simple representations of
Yn_1. Then L, being a subrepresentation of V' disjoint from L;, must be @j# L;.
Thus distinct summands of Resy,, , V are orthogonal. Since GT bases for V re-
strict to GT bases for the summands of the restrction, we conclude by induction
that a Gelfand-Tsetlin basis for V' is orthogonal. O

Our classification of simple representations of ¥, will involve analyzing the
action of GZ(n) on this basis, which in particular specifies the branching rule for
(va Zn—l)-

1.8.2. YJM elements.
DEFINITION 1.8.2.1. The nth Young-Jucys-Murphy element is
Xn=1n)+2n)+---+(n—1,n) € CE,.

Note X; = 0 and X, is the difference of the sum of transpositions in ¥,,_; and
¥,. Thus X,, € ZCX%,,_1 + ZC%,, C GZ(n).

LEMMA 1.8.2.2.
Z(Enazn—l) = <Z(CEn—1)7Xn>
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PRrROOF. Certainly (Z(CX,,_1),X,) C Z(X,,X,-1). Now note that the cen-
tralizer has a basis of indicator sums of marked cycle types: these are cycle types
where we remember where n is. If v is a marked cycle type, let £(v) be the total
lengths of all nontrivial cycles, and let

ty=> 0€Z(Sn, Lno1).
ocv
Then {t, }, marked cycle type i & basis for Z(2,,X,_1).
We show ¢, € (Z(C%,,_1), X,) by induction on ¢(v). The base case is £(v) = 0,
when t, =1 € Z(CX,,_1). Now let v be given. If v = v/ U " has two disjoint
cycles, then t,/,t,» € (Z(C%,,-1), Xp) by induction. Now

tyt, = ct, + Z ( smaller £’s)

for some positive integer ¢, so by induction ¢, € (ZC%,,_1, X,,).
We are left to consider when v is a single cycle. If the cycle v does not contain
n, then t, € Z(CX,_1). Now suppose the cycle in v contains n. Consider a cycle

(41,...,%j—1,n) containing n of length j. Then
(Z n)(ll ij ) n): (Z‘,il,...,ij,l,n) ’L‘¢{i1,...,’ij,1}
b PR ) — 1 . . . . . . . )
(01, ey im1, ) (G Tty ooy Bjm1) @ =1

which is either a j + l-cycle containing n or a prodcut of two cycles with total
length j. Thus, if v/ is the type of a ¢(v) — 1-cycle containing n, then

Xt =ct, + Z smaller £’s

for some positive integer c. Hence t, € (ZCX,,_1, X,,). O

1.9. (Oct 03) The spectrum of YJM
THEOREM 1.9.0.1. GZ(n) is generated by {X1,...,Xn}.

Proor oF THEOREM [1.9.0.1l The proof is by induction on n. By the Lemma,
ZC%, C Z(%,,%,-1) = (ZC%, -1, X,). By induction,

<X1a cee 7Xn71> 2 GZ(n - 1) 2 ZC%, 1.

Thus
(X1,...,Xn) 2(ZC%,,_1,X,,) D ZCX,,.
We conclude
(X1,...,Xn) 2(GZ(n—-1),ZC%,) = GZ(n),
as desired. O

DEFINITION 1.9.0.2. spec(n) C C™ is the set of joint eigenvalues of (X1, ..., X,,)
in all representations of ¥,,. If o, 8 € spec(n), the define o ~ § if a and 8 appear
as joint eigenvalues in the same representation of ¥,,.

Note that the joint eigenvalues of Z(X,,) determine the character and thus the
irreducible representation of ¥,,. Since {X1, ..., X,,} generates the Gelfand-Tsetlin
algebra GZ(n) = (Z%;) 2 ZX,, the eigenvalues of (X1,...,X,,) on different repre-
sentations of 3, are disjoint. Thus spec(n)/ ~ is in bijection with the irreducible
representations of 3,,.
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1.9.1. Young tableaux.

DEFINITION 1.9.1.1. Given a partition A = (A > Ay > ---) F n, the Young
diagram is a diagram of left-aligned boxes with A; boxes in the ith row.

For example, [ ] corresponds to the partition (3,1) F 4.

DEFINITION 1.9.1.2. A standard Young tableau is a Young diagram with the
numbers {1,2,...n} placed in boxes so that the rows and columns are strictly
increasing (here n is the number of boxes).

Note: tableau is singular while tableaux is plural.

EXAMPLE 1.9.1.3. The three Young tableaux with shape (3,1) are

12[3] [1[2[4] [1[3[4]
1 3 2

DEFINITION 1.9.1.4. Let T be a standard Young tableau. The content of a box
0 is

c(8) =z(0) —y(O).
The content vector of T is

oT) = (e(1]),...,e([n]).

Let Cont(n) be the set of all content vectors of standard Young tableaux of n boxes.

ExXAMPLE 1.9.1.5.

C(é 2|4l> =(0,1,-1,2).

Note that the standard Young tableau can be recovered from the content vector.
Define two content vectors a = [ if they correspond to tableaux on the same
Young diagram.

THEOREM 1.9.1.6 (Branching graph isomorphism). /Lor18/, 4.12 For all n,
Cont(n) = spec(n) and ~==.

The theorem characterizes the branching rule for 3,,. Note that restriction from
¥, to 2,1, at the level of spec, means forgetting the eigenvalues of X,,. Thus, if
VA is the irreducible representation corresponding to a Young diagram X - n, then

Resyr VX =EPve,
n—1
I

where p = n — 1 runs over all Young diagrams formed by removing a box from A.
By deleting the box labelled n from a Young tableau, we find a smaller Young
tableau. Thus Young tableau are exactly in bijection with n-tuples

GCpu € Cptp_1 €A

where p; is a Young diagram with ¢ boxes. Thus the branching graph isomorphism
implies that the branching rules for representations of ¥,, and Young diagrams are
the same.

First we characterize Cont(n).

DEFINITION 1.9.1.7. If T is a Young tableau, s € %, is admissible if sT is also
a Young tableau.
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LEMMA 1.9.1.8. Suppose T and T’ are A-tableaux. Then there exists a sequence

of admissible adjacent transpositions si,, ..., s;, such that T' = s; ---s;,T".

Proor. It suffices to prove the Lemma when T” is the standard tableau with
1,2,...,n written left to right, top to bottom.

Suppose n is the last entry of the last row of T. Then we can remove that box
from both T and T". By induction, the claim follows.

Now suppose the last entry of the last row of T is np. Then np + 1 is not
below or to the right of nr, so (ny, ny+1) is admissible for T'. By induction, there
exists a sequence of admissible transpositions taking 7' to a tableau with n in the
last entry of the last row. O

PROPOSITION 1.9.1.9. Cont(n) is the set of all a € C™ such that
1. a1 = 0,‘
ii. at least one of a; £1 is in {o,..., i1} for alli > 1;
1. if oy = o for i < j, then
{Oéi + 1} g {ai-i-h [N 7O(]'_l}.
PROOF. First, say that o € Cont(n).
i a1 = 0.
ii. a; £ 1 is the content of the adjacent boxes to the left and above of ¢. For
A to be a Young diagram, one of those must also be in the diagram.

ili. Say a; = «; for i < j. Then all boxes in the rectangle with vertices ¢ and
j are in A\. Thus there are boxes between ¢ and j with content a; + 1.

Conversely, suppose that « satisfies conditions i-iii. We show a € Cont(n) by
induction on n. The base case n = 1 holds by i. Let o/ = (a1,...,a,-1). By
induction, o/ € Cont(n — 1). Let T’ be the Young tableau with content o’. We
want to add back in box n to make a tableau T with ¢(T') = «. If the diagonal for
ay, is empty, then ii. implies that the nextdoor diagonal is nonempty, so we can
add a box to obtain a tableau T'. If the diagonal for «,, is nonempty, then there
exists ¢ < n such that a; = ay,; let ¢ < n be maximal with this property. Then by
iii. there are ry such that ¢ < ry <n and a,, = o; £ 1. Since T” is standard, 4
cannot be above or to the left of i. Thus ry are on the boxes adjacent to ¢, so we
can add n on diagonal «; to obtain a Young tableau 7. ([l

1.10. (Oct 08) Proof of the branching graph isomorphism
1.10.1. Some relations in CY,,. Recall the YJM elements

j—1
X; = (i,9).
i=1
Let s; = (4,4 + 1) € ¥;11. Then {s1,...,8,-1} generates ¥,; this is known as

the Cozxeter generating set. We want to understand how s; acts in the Gelfand-
Tsetlin basis. That means we want to understand the operators s; X;. Note that
s;X; = X;s; if j & {i,i+ 1}. In the critical case j € {i,7+ 1},
i—1
SZ‘XZ'S;l = Z(]J + ].) = Xi+1 — S;.
j=1
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This relation may be rewritten as
5 Xi +1=Xip1s
or
Xl-sl- +1= SiXi+1.
These relations imply that if vr is a simultaneous eigenvector for GZ(n), then
C{s;vr,vr} is stable under GZ(n), for

i Xjvr J&{i,i+1}.
Xisjvr = Xip1sivp —vp j =1
X;s;vr + v j=1+1
Our calculations above show that if {vr} is a Gelfand-Tsetlin basis vector,

then span{vr,s;V;} is stable under (X;, X;11,s;). Our calculations are based on
analyzing this action.

LEMMA 1.10.1.1. Let o € spec(n) and let v, be a GZ basis vector with joint
etgenvalue a. Then
1. a; # g for alli;
it if oy = oy £ 1, then s;v, = tv,;
1. if a1 # a; £ 1, then
5i0 = (Q1,..., 01,41, 0, Qiga, . . .) € spec(n)
and s;o ~ . If d = (cip1 — )1, then

Vs.oqp = SV — dUq .

PROOF. Let W = span{vq, $;ve}. Then W is stable under {s;, X;, X;11}.
Suppose dim W = 1. Then s;v, = v, and
Xit1Va = 8iX;8i0a + 8i0q = (i = 1)vg,
SO a1 = a; £ 1 and s;v, = £v, in this case.
Now suppose dimW = 2. Then in the basis v,, s;v4, the operators X; and
X, +1 have matrices
) (073 -1 ) Q41 1
X;— [0 ai+1:| Xip1 [ 0 Ozz]
Since X; and X; 41 are diagonalizable on V' («), they are also diagonalizable on W, so
a; # a;y1. Thus we have shown a; # ;11 in all cases. If we set d = (a1 — ;)
and w = S;V4 — dv,, then
Xiw = Q18U — Vo — QjdUg = i11(800 — dvg,).
Similarly, X;1 1w = a;w. Thus w is a Gelfand-Tsetlin basis vector for s;a. The
matrix for s; in the basis {v,, w} for W is given by
SV = W + dvg,
SiW = Vo — dsive = (1 — d2)va — dw.
N d 1—d?
Si 1 _d |

+1 0
1 F1)°
form on our representation, then (s;z,s;y) = (x,y) for all z,y (by definition of

If d = +1, then the matrix for s; is ( If (,) is an invariant Hermitian
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invariance). Lemma|1.8.1.10|says that the Gelfand-Tsetlin basis is orthogonal with
respect to any invariant Hermitian form. But when d = +1,

0 = (Va, W) = (804, S;w)
= (£ + w, Fw)
= F{w,w) # 0,

a contradiction. Thus d # +1. The proof is complete. O

Recall Coxeter relations s;s; = s;s; for |¢ — j| > 1 and

SiSi+18i = Si+15iSi+1-

LEmMMA 1.10.1.2. i. spec(n) C Cont(n)

if a € spec(n),B € Cont(n), a ~ 3, then § € spec(n) and B ~ «, as
desired.

PRrooOF. i. Say « € spec(n). Since X1 =0, ay = 0.

ii.

Suppose towards contradiction that neither of a;£1isin {ay,...,a;—1}
for some ¢ > 1. Let ¢ be least with this property. Then by Lemmall.10.1.1}
(a1, @9, @, i1, iy 1, .. .) € spec(n). By induction we conclude

(i, a1y, d,...) € spec(n).

Thus a; = 0, which contradicts Lemma since adjacent spectral
values must be distinct.

Now say ¢ < j such that a; = aj and {a; £ 1} € {evi1,..., 51}
Pick j — 4 to be minimal If a;41 # a3 £ 1 or oj # oy = 1, then we can
swap, contradicting minimality. If j —¢ = 1, then we have (..., o, ;. . .),
contradicting Lemma [I.10.1.1] Thus « is of the form

(...,a,ax1,...;a+1,a,...).

By minimality, a does not appear between a + 1 and a + 1. But then
...,ax1l,...;a%1,...1is a smaller examle of what we seek, unless both
a + 1 are in the same place in the vector. Thus, the minimal « € spec(n)
such that o; = a; and {oy; £1} € {;41,...,@j_1} must be of the form

a=(...,a,ax1,a,...),
Le. ajp1 = ;£ 1 and e = a1 F 1. By Lemma [TI0.10] s;vq = $vq
and $;41V4 = Fvq. Thus
tVa = $i+18iSi+1Va = $iSi+15iVa = FVa;
a contradiction! We conclude « satisfies property iii of content vectors.
Thus o € Cont(n), as desired.
Suppose « € spec(n), 8 € Cont(n), and « and S correspond to the same
Young diagram. By Lemma [1.9.1.8] there exists a sequence s;,,...,s;, of
admissible transpositions such that
T = si, -85, 1a-
Admissibility means the boxes i,7 + 1 we want to swap are not adjacent,

80 ¢; # ¢;41 £ 1. Thus by Lemma [1.10.1.1]

x
Si;+ 8iVa € C Vs, ooosiy, Vors
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S0
o~ 5i; -+ 55,0 € spec(n).

Thus S € spec(n) and « ~ 3, as desired.
[l

THEOREM 1.10.1.3. For all n, spec(n) = Cont(n) and ~==. The branching
graph for the symmetric groups is the branching graph for Young diagrams.

Proor oF THEOREM [[L10.1.3] By Lemma [1.10.1.2] spec(n) C Cont(n), and
for each equivalence class [c¢] € Cont(n)/ &, [¢] N spec(n) is contained in a single
equivalence class. (As Jameson points out, we have shown that equivalence classes
of spec(n) are unions of equivalence classes in Cont(n)). Thus |spec(n)/ ~ | <
| Cont(n)/ = |. But both sets have size equal to the number of partitions of n, which

means that each equivalence class in Cont(n) is an equivalence class in spec(n), and
spec(n) = Cont(n). O

1.11. (Oct 10) Murnaghan-Nakayama rule

1.11.1. Rimhooks. Statement of the rule. The Murnaghan-Nakayama
rule gives a combinatorial description of the character values of %,,.

DEFINITION 1.11.1.1. For a Young diagram A, the boundary consists of those
boxes with no southwest neighbor. A connected subset of the boundary is called a
rimhook. If a rimhook has m boxes, we will call it an m-rimhook. The height ht(v)
of a rimhook v is the number of rows in the rimhook plus one.

THEOREM 1.11.1.2 (Murnaghan-Nakayama rule). Let A - n. Suppose that
o € Xy, and that o = co’ for ¢ a cycle of length h and ¢’ a permutation disjoint
from c. Then

O ETED SRS COELLTE
HCA
A/ h-rimhook

We first prove the Murnaghan-Nakayama rule for an n-cycle (when u = &).

LEMMA 1.11.1.3. Let ¢ € ¥, be an n-cycle. Then

) = {(—1)h A= (n—h,1") is a hook

0 otherwise

PRrROOF. Note X5 -+ X, is the sum of all n-cycles in ¥,,. Thus

o) = —

LA
mtr(XngV )

If X\ is not a hook, then every content vector has a 0 after the 1st position, so
Xy X, VA =0.

Suppose A is a hook. Note that a tableau is determined exactly by which of
the numbers {2, 3,...,n} go into the “leg” of h boxes, so the total number is (”;1)
On the standard tableau, the content is

0,1,....,n—h—1,-1,...,—h).
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Thus X, --- X, has eigenvalue (n —h — 1)!h!(=1)". But X, --- X,, € ZCY,, since it
is the sum of all n-cycles, so it acts by the scalar (n — h — 1)!h!(—1)". Thus

ﬁtr(XQ .. .Xn;VA) _ (n_]-l)'<n ; 1) (n —h— 1)'h'(—1)h _ (_1)h,

as desired. O

1.11.2. Skew diagrams and skew tableaux. Let E,'n_k C ¥, be the per-
mutations stabilizing {1,...,k} elementwise. Then X/ , C Z(X%,,X),

DEeFINITION 1.11.2.1. If gt C A are Young diagrams of size k and n, then
VAR = Homes, (V,,, Resy,, Vi),
a module over ¥/, C Z(X%,,Xg).

By the branching rule, a basis for V*/# is indexed by chains g = Ao € A\; C
++An—k = A. These correspond to skew tableaux: filling the skew shape \/p with
numbers {1,...,n — k} such that rows are increasing and columns are increasing
downwards. The number of skew tableaux depends only on the shape of A/u and
not the particular choice of A or p with this difference.

THEOREM 1.11.2.2 ([Lor18], Theorem 4.22). The skew hook module V* de-
pends only on the shape of /.

Lorenz’s proof of this theorem involves working with an explicit basis. It would
be nice to know a basis-free proof!
The MN rule is equivalent to:

THEOREM 1.11.2.3. Let s be a cycle of length n — k. Then

tr( VA/;L) (—=1)MO/W) XN/ is a rim hook
r(s; = ‘ '
0 A is not a rim hook

IfybEnlet ¥, =%, xX,, x--- C%,.

LEMMA 1.11.2.4 (Restriction to Young subgroups. [Lorl8|, 4.27, Step 1). Let
AFnandlet pbk,p C A Let yEn—Fk. Then

RN /o Ae/Aeo1
Resy; ™V _QPV KRV

where A is the set of chains
B=XCA C--CAr=A
where |\ /Ni—1| = v;. The induced maps
Indyy~* VA0 R GV YN
are surjective.

LEMMA 1.11.2.5 (|[Lorl8|,Lemma 4.27, Step 2). Suppose A/u is disconnected
and s is an n — k-cycle. Then

tr(s; VMH) = 0.



1.11. (OCT 10) MURNAGHAN-NAKAYAMA RULE 29

PROOF. Write A/p = A1 /plUNo/p and let v = (JA1/p], | A2/u|). Then we obtain
a surjective map
Indyy % VB R YA/ M e
Y

By a dimension count, this map is an isomorphism.
Thus V* is induced from the subgroup ¥.. As s is not conjugate into X, we
conclude tr(s; VM*) = 0. O

LEMMA 1.11.2.6 (|Lorl8|, Proposition 4.28). Suppose A\/p is not contained in
the boundary. Then
tr(s; VMH) = 0.

PROOF. Since A/ is not contained in the boundary, A/u contains the Young
diagram for (2,2). Let v = (4,1"%=%); then ¥ =%, We find an epimorphism
Indy" ™+ V2 5y,

Now if V® is an irreducible constituent of V*/# it appears in Indy, V(22) By the
branching rule, this implies (2,2) C «, so « is not a hook. Thus tr(s; V*) = 0. As
this holds for all constituents V%, we conclude

tr(s; VMH) = 0. O
LEMMA 1.11.2.7 ([Lor18|, Proposition 4.28). Suppose A\/u is a rimhook of size
h=n—k. Letv=(n—k—h,1") be a hook. Then

Ve = {é "

PROOF. Since the representation VA/# depends only on the shape of A, we
may assume A\/u touches the axes y = 0 and = 0. A hook v = (n — k — h, 1")
is contained in A only if h = ht(\/p). Since VM# C Resg," . V2, by the branching

rule we obtain [V¥ : VA/#] = 0 in this case. )
Now let v be the hook with h = ht(A/u). We have

Vs xs,_, = @ veR e,

But by the same token

Vsxs,_, =@PVVIRVE
B

But A\/v = /@ = p as representations of X, as A/u depends only on the shape.
The first decopmosition gives

[VER VY : Ressyxx, , V] =[V": VM,
while the second gives
[VER VY : Resy, xx,_, V] = [VF: VMV =1,
as desired. (]






CHAPTER 2

Representations of the unitary group

2.1. (Oct 17) Topological groups and compact groups
2.1.1. Topological groups.

DEFINITION 2.1.1.1. A topological group G is a topological space G, equipped
with continuous maps m : G x G — G, i : G — G, and e : * — G which make G
into a group with product m and inverse g=! = i(g), and such that the topology

on G is Hausdorff.
A topological group G is compact is G is compact as a topological space.

ExaMPLE 2.1.1.2. If G is a group in the ordinary sense, then G is a topological
group under the discrete topology. A discrete group is compact if and only if it is
finite.

ExAMPLE 2.1.1.3. G is a Lie group if G is a smooth manifold and the multipli-
cation and inverse maps are morphisms of manifolds. A Lie group is a topological
group.

For example, G = GL,(R) is a Lie group since G is an open subset of M,,»,(R)
and the multiplication and inverse maps are rational functions.

EXAMPLE 2.1.1.4. The unitary group is
U(n) ={x € GL,(C) | 2"z = 1},

where 2 is the Hermitian conjugate of x: x = z'. Note that U(n) is a closed
subgroup of GL,(C). It is also a Lie group. Since |z;;| <1 for all z € U(n), U(n)
is a closed subspace of D" where D C C is the closed unit disk. Thus U (n) is
compact.

ExaMPLE 2.1.1.5. Suppose --- — G2 — (7 is an inverse system of finite
groups, with transition maps t; : G; = G;_1. Then G = @Z G; carries the inverse
limit topology. We can realize G C [, G; as the subset

G= {(gi)i21 € HGz‘

The inverse limit topology is the subspace topology of the product topology on
L, Gi, where each G; has the discrete topology. There are continuous maps 7; :
G — G;. A basis for the topology is given by the sets 7T;1(£L') asi>1and x € Gj,.
By Tychonoff’s theroem, [, G; is compact, so G, being a closed subspace of a
compact space, is also compact.
An example of a profinite group is GL,(Z,), where Z, is the ring of p-adic
integers.

tz(gz) = gi—1 for all Z} .

31
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ExXAMPLE 2.1.1.6. G = GL,(Q,), with the metric topology induced from Q,,
is a topological group. It is the union of conjugates of the profinite group GL,(Z,).

2.1.2. Haar integral. Recall that if X is a topological space, we let C(X, C)
denote the space of continuous functions X — C.

THEOREM 2.1.2.1 (|Wei40|, Chapter II). Let G be a compact group. Then there
exists a unique linear function

/G:C(X,C)—>C,

fH/sz/Gf(wdg

called the Haar integral, such that

i. if f>0, then [, f>0;
ii. [ satisfies the triangle inequality:

‘/Gf’s/clfl

141. fG 1=1.
. fG 1is biinvariant:

/G f(zg)dg = /G f(g)dg = /G f(g2)dg
forallz € G.

The first three conditions imply that [, : C(X,C) — C is continuous. The
Riesz-Markov theorem says that continuous, positive linear functionals on C'(X, C)
are given by integration with respect to a Borel measure. The measure associated
to the Haar integral is called the Haar measure.

REMARK 2.1.2.2. If an integral on a compact group G satisfies i.-iii. and is left
invariant, then it is also right invariant.

We will not prove the theorem in general. In the cases we care about, it is
easier to construct the Haar integral than to prove the theorem in general.

EXAMPLE 2.1.2.3. Let G be a finite group. Then
1
/ f==>
P

EXAMPLE 2.1.2.4. Let G be a compact Lie group. Since G is a manifold, we
may take a volume form w. € ATT*G. Define a differential form w by wg = 6;_1(,0@,
where 5, : G — G is left translation by h. Then w is a left-invariant volume form,
so by the theory of integration on manifolds,

7=

satisfies 1.-iii. and is left invariant.
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ExXaMPLE 2.1.2.5. Let G be a profinite group. The Haar integral will be
uniquely specified by the integral of the characteristic functions 1x where X is
an open set. If K, = kerm, : G — G,, then

/1 1
¢ TG K, Gl

2.1.3. Integrating vector-valued functions (Calc ITI). Let V be a finite-
dimensional vector space. Then fG defines an integral

/G:C(G,V)—>V

as follows: given a basis for V, we get an isomorphism V = C", and then
/ C(G,V)=2C(G,CYH—-C"2V
G

is defined to be integration component-wise. Linearity of the one-dimensional inte-
gral implies that the resulting function does not depend on the choice of basis.

2.1.4. Generalities on representations of compact groups.

DEFINITION 2.1.4.1. A representation of a topological group G is a continuous
homomorphism

p:G—= GL(V)

into a finite-dimensional complex vector space V.

There are also infinite-dimensional representations, but we will not consider
them in this course. A morphism of representations V. — W is a linear map
T:V — W such that ¢T = Tg for all g € G.

THEOREM 2.1.4.2. Let V be a representation of a compact group G. If U CV
is a subrepresentation, then there exists a subrepresentation W C V' such that
V=UsW.

PROOF. Again there exists a linear map 7 : V — U such that «|y = idy.
Define

T = / g7g~'dg € Hom(V,U).
G

Then 7 is G-linear and 7|y = [, gidyg~'dg = idy. Then W = kern is a subrepre-
sentation of V and satisfies V =W @ U. |

An irreducible representation V' has no proper nonzero subrepresentation. We
have the character yy : G — C of a representation. It is continuous.

THEOREM 2.1.4.3. Let V, V' be representations of compact G. Then
dim Homg (V, V') :/ xv (97 Hxv(9)dg.
G

For a representation V', the matrix entries define a function
acty, : V'@V = C(G,C).

Note actj; is a G x G-linear map.
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THEOREM 2.1.4.4 (Peter-Weyl. [Ada69], Theorem 3.39).

rG= & vev
V simple G-rep

over G x G.

Again, we will not prove it.

EXAMPLE 2.1.4.5. If G = S! = R/Z, then for each n € Z we have p, : S' —
C* given by p,(x) = exp(2minx). Then Fourier analysis tells us that L%(S!) =
@nEZC : pn

2.1.5. Matrix groups. [GWO09], §1.3.1-2.

DEFINITION 2.1.5.1. A linear group is a closed subgroup of some GL,(R).

When working with linear groups, we can work directly with analysis in M,,(R),
the space of n X n matrices.

DEFINITION 2.1.5.2. Fix a norm | -| on R™. The matriz norm on A € M, (R)
is defined by
|A| = sup |Az|.
|z|=1
The supremum exists and is attained since the unit sphere is compact. By
definition, if = # 0,

s

|Az| =
]

|z < [A]|z|.

The matrix norm is submultiplicative:
|AB| = sup |ABz| < |A]| sup |Bx| < |A||B].

|z|=1 |z|=1
DEFINITION 2.1.5.3. The matriz exponential of a € M, (R) is

oo n

a
ea = E 7|
= n!
Since the norm | - | is submultiplicative, we have

n!

n=k

~ |a"|
< E —_—
- n!

n=~k

Hence the series for e® converges absolutely and thus converges for all a € M,,(R).
Furthermore, a +— e® is continuous.

2.2. (Oct 22) The Lie algebra of a linear group
2.2.1. Matrix identities.

THEOREM 2.2.1.1. Let f € C[t1,...,tn] be a power series converging on the
polydisk {t € C™ | |[t;| < R} and let Ay, ..., A, be pairwise commuting matrices. If
|A;| < R for all i, then f(A1,...,A,) converges absolutely. The assignment

(Ala"';An)%f(Alv"'vAn)

is a smooth function on its domain, and is compatible with addition, multiplication,
and composition of formal power series.
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EXAMPLE 2.2.1.2. Fix A € M, (R). Then t + €' is a smooth function R —
GL,(R). If we view GL,(R) C M, (R), the derivative of this function is ¢ ~ Ae4.

EXAMPLE 2.2.1.3. Recall that e**¥ = e%e¥ as power series in commuting vari-
ables x and y. By compatibility with multiplication, eA*t8 = e¢4eB if A and B
commute.

EXAMPLE 2.2.1.4. Fix a matrix A. As sA and tA commute for s,t € R, we see
t — et4 is a homomorphism R — GL, i.e. e(sTH)A = ¢s4etA,

ExXAMPLE 2.2.1.5. The Taylor series for
_ nr1 2"
log(1+z) = 7;( =
converges for |z| < 1. Thus if |[A — I,,| < 1, then the series
_ nir(A=1D)"
og(4) = Y (1)
converges. In this domain, log is a smooth inverse for exp.
2.2.2. The Lie algebra of a linear group. [GWO09], §1.3.3.
DEFINITION 2.2.2.1. A linear group is a closed subgroup G C GL,(R).
Note that a linear group comes with an embedding into a fixed GL,(R).

EXAMPLE 2.2.2.2. U(n) = {r € GL,(C) | 27 = 1} is a linear group (Home-
work).

DEFINITION 2.2.2.3. The Lie algebra of a linear group G C GL,(R) is
L(G) = {a € M,(R) | e'" € GVt € R}

LEMMA 2.2.2.4 (Lim-lemma). Suppose G C GL,(R) is a linear group. Let
{z;} be a sequence in M, (R) such that x; # 0 for all i, e* € G for all i, x; — 0,
and z;/|z;| — x for some x € M, (R). Then e'* € G for allt € R.

PrOOF. Let t € R. For each ¢, subdivide R into intervals of size |z;|. Thus
there exists m; € Z such that |t — m;|a;|| < |z;|. Since xz; — 0, lim; o0 my|a;| = ¢.
Then

2
lim m;x; = lim (mg|z;|) — = ta.
By continuity of the exponential function,
e = lim ™% = lim (e*)™.
71— 00 1— 00

As e¥ € G and m; € Z, we see (€)™ € G. Since G is closed, e'* € G. O

LEMMA 2.2.2.5 (JGW09], Lemma 1.3.6). Suppose xz,y € M,(R). Then for N
sufficiently large,
X+Y [X,Y] en

z/N _y/Ny _ =N
log (e e?™) N N2 ' N?

where ey — 0.
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PrOOF. Expand log(e**e!Y) into power series and collect all terms with de-
grees > 2 into . At the end we’ll take s =t =1/N.
Now

1
log(esXetY) _ (esXetY _ 1) _ 5

1
= (sX + 1Y + s*X?/2 4+ stXY + *Y?/2) — 5(52)(2 +st(XY +YX) + 2V 4 - -

(esXetY_1>2_‘_.__

1
:sX—|—tY—|—§st(XY—YX)+~--. O

COROLLARY 2.2.2.6. Suppose x,y € M, (R). Then
1.
ea:/Ney/N _ el/N(ereraN)
where any — 0 as N — 0.
et/N gy/N o—(z+y)/N _ 1/2N*([X,Y]+5N)

where Sy — 0 as N — oo.

PROOF. For part ii, apply Lemma [2.2.2.5| twice. Set Zy = N log(e*/Nev/N)
for N sufficiently large. Then

log(ez/Ney/Ne—(w+y)/N) — log(eZN/Ne—(ery)/N)
Zn — (z + 1
I | L e )N 01N,
N 2
But Zy /N = ¥ 4 [l 4 o(1/N2), s0 [Zn, —(x +y)]/N? = o(1/N?), and

/N /N (o) /Ny _ [ Y] >
log(e™ ™ e¥/ e ) SN2 +o(1/N*),
as desired. (]

PROPOSITION 2.2.2.7. Let G C GL,(R) be a linear group.

i. L(Q) is a subspace of M, (R);
it. L(QG) is closed under the commutator [X,Y] = XY - Y X.

ProoF. First, note that L(G) is closed under scaling by definition. If z,y €
L(G), then e*/Ne¥/N € G for all N > 1. Assume z # —y. Apply the Lemma to

1
oy =log(e”Ne!N) = Z(w +y +aw),

where oy — 0. Then
TN r+y
im — = ——
so ¢ +y € L(G) by the Lim lemma.
Simiarly, if z,y € L(G), then e*/Ne¥/Ne=(@+9)/N ¢ @ for all N > 1. Applying
the Lim Lemma to
ew/Ney/Ne—(w-s-y)/N)

= sz, + B)

where Sy — 0 gives [z,y] € L(G). O

zy = log(
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THEOREM 2.2.2.8 (E. Cartan). Let G be a linear group. Then there is a neigh-
borhood 0 € U in M, (R) and a C* diffeomorphism f : U — f(U) > 1 such that
f(U)CGL,(R) is open and f : UNL(G) = f(U)NG.

Slogan: “every linear group is a Lie group”

Proor. Note that if G = GL,, exp does the job. In general, let V- C M, (R) be
a complementary subspace to L(G), and define f : M,,(R) = L(G)®V — GL,(R)
by
f(u®v) = exp(u) exp(v).
Note that dfy = id. By the inverse function theorem, there is a neighborhood

U 3 0 such that f|y is a diffeomorphism U — f(U). By shrinking, we may assume
U=U" xU"for U' C L(G) and U” C V. Then

F(U xU") =exp(U’) exp(U").

Suppose towards contradiction that every neighborhood U = U’ x U” 5 0 has
FUNL(G)) # f(U)NG. As f(U'x0) C G by definition of Lie algebra, there exists
v, @ vl — 0, vl # 0 such that f(v), +v])) € G. Then f(v]) € G, so f(v])) € G.
Since the unit ball in V' is compact, v!/ /||v//|| has a convergent subsequence. Replace
vl with this subsequence. Then

"

= lim UZ eV
n—oo [lur||

Note ||z]| = 1, so z # 0. By the Lim-lemma, e!* € G for all ¢, i.e. € L(G). Thus
x € L(G)NV =0, so x =0, a contradiction.

Thus there is a neighborhood U = U’ x U” 3 0 such that f(U)NG = f(UN
L(@)). O

In the proof, we see that f|;(s) = exp, and so there is a neighborhood 0 €
U’ C L(G) such that exp(U’) C G is an open neighborhood of 1 € G.

2.3. (Oct 24) Representations of linear groups

2.3.1. The differential of a homomorphism. Let p : G — GL(V) be a
representation of a linear group G (i.e. V is a complex finite-dimensional vector
space and p is a continuous homomorphism).

LEMMA 2.3.1.1. Let f : R = GL(V) be a continuous homomorphism. Then
there is a unique A € M, (C) such that f(t) = ' for all t € R.

PRrROOF. Recall the exponential map exp : M,,(C) — GL,(C) has a neighbor-
hood 0 € U C M, (C) such that exp : U = exp(U) = V, with inverse log : V' — U.
Recall that eX*Y = eXeY if X and Y commute; thus log(AB) = log(A) + log(B)
when all three make sense. Let € > 0 be such that log(f(t)) is defined for || < e.
Thus log(f(t + s)) = log(f(¢)f(s)) = log(f(t)) + log(f(s)) whenever s,t,s +t €
(—€,€). Thus log f is an additive continuous function (—e,e) — M, (C), so there
is a unique A € M,,(C) such that log f(t) = tA for [t| < e. Hence f(t) = e* for
sufficiently small ¢. For general ¢, pick n € Z such that |[t/n| < e. Then

J(t) = fnlt/m) = flt/n)" = (/) =

= et O
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If p: G = GL(V) is a representation and a € L(G), then t — p(e!?) is
a homomorphism R — GL(V). Thus there is a unique b € End(V) such that

p(et“) — etb.

DEFINITION 2.3.1.2. For p: G — GL(V), define dp : L(G) — End(V) by
p(eta) — etdp(a)
for all t € R.
We can also define dp(a) by the formula
d

—p(e')

dp(a) = —

t=0
What are the properties of dp, and can p be recovered from dp?

LEMMA 2.3.1.3. dp is continuous.

PRrROOF. Let a € L(G). Pick a bounded neighborhood U of a. Then there
exists ¢t > 0 such that tU is in the domain of log. Thus

dp(z) = log p(e'™)

t
for € U. This formula is a composition of continuous functions and thus is
continuous. Hence dp is continuous at a for all a € L(G). g
PROPOSITION 2.3.1.4. i. dp is linear and

dpla, b] = [dp(a), dp(b)].
1. p is a C°° map.
PROOF. i. Certainly dp(Aa) = Adp(a) for A € R. Now say a,b € L(G).
Let g, = e?/meb/n = en(atbtan) for some a,, — 0. Then

p(92) = plexp((a-+ b+ )

(a+b+ an))).

1
= exp(dp(ﬁ

Since dp is continuous,
lim nlogp(gn) = lim dp(a+b+ o) = dp(a+b).
n—oo n—oo

On the other hand, since p is a homomorphism,

plgn) = er(@/nede®)/n — o5 (dp(a)tdpd)ter,)

SO
Jim nlogp(gn) = lim dp(a) +dp(b) + ai, = dp(a) + dp(b).

Thus dp(a + b) = dp(a) + dp(b).
To prove dp[a, b] = [dp(a), dp(b)], use a similar method on e®/™eb/me=(a+b)/n,
ii. Observe exp is a local C*°-diffeomorphism at 0, and dp is linear and thus
C*. Thus p is C*° on a neighborhood U of 1. For general g € G, note
p(gh) = p(g)p(h), so for gh € gU, we see p is C* on gU.
O
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2.3.2. From Lie algebra to Lie group.

LEMMA 2.3.2.1. Let G be a connected topological group and let U be a neigh-
borhood of 1. Then G = U,>1U".

PROOF. Let U = UnZlUn-

Note that U™ is open: for g1 ---g, € U™, g1 -+ gn—1U C U™ is open. Thus U"
is open.

Now we show U is closed. Suppose g € U. Then every neighborhood of g
intersects U. Since the inverse map is a homeomorphism, U ! is open, so gU ~! NU
is not empty. Thus there are h € U and ¢1,...,gx € U such that gh™' =g, -+ - gi.
Hence g =gy ---grh € U1 CU. Thus g € U. |

PROPOSITION 2.3.2.2. Let G be a connected linear group and let p: G — GL(V)
be a representation.
i. If W CV, then W is stable under p(G) if and only if dp(a)W C W for
all A € L(G).
ii. Let f:V = V' be a linear map and let p'G — GL(V") be another repre-
sentation. Then f is G-equivariant if and only if f is L(G)-equivariant.

ProOOF. If G is connected linear, then exp(L(G)) contains a neighborhood of
1 by Cartan’s theorem. Thus G is generated by exp(L(G)).

i. If W is stable under p(G), then e!»(@TW C W for allt € R and a € L(G).
Thus for w € W,

d
dp(a)w = —et®( @y e W.
dt ‘=0

Conversely, if W is stable under dp(L(G)), then eXOW C W. As (&)
generates G, we find p(G)W C W.
ii. Suppose f is G-linear. Then

6tdp'(a)f — fetdp(a).
Taking the derivative at t = 0 gives dp/(a)f = fdp(a). Conversely, if
dp'(a)f = fdp(a) for all a € L(G), then p'(e*)f = fp(e*). Thus f
commutes with e(). As (@) generates G, the map f is G-linear.
O
COROLLARY 2.3.2.3. IfV is a representation of connected linear G, then
Ve ={veV|LG)w =0}
PrOOF. V& = Homg(C, V) where C is the trivial representation triv : G —

GL(C), triv = 1. The differential of triv is dériv = 0. Thus f : C — V is
G-equivariant if and only if dpf = fdtriv = 0. O

DEFINITION 2.3.2.4. A representation of L(G) is a linear map ¢ : L(G) —
End(V) such that ¢[a,b] = [p(a), p(b)] for all a,b € L(G).

Proposition [2.3.2.2] tells us that the functor
RepG — RepL(G)

sending (V, p) to (V,dp) is fully faithful. However not every representation of L(G)
comes from G.
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EXAMPLE 2.3.2.5. Let G = S*. Note that 71 (St) = Z. We view S! as the unit
circle in C* = GL;(C). Then L(S') = iR. A representation f : L(S') — End(V)
is an endomorphism A € End(V'). This defines a representation iR — GL(V') by
iz — €4, This descends to S' = iR/2miZ if and only if e>™4 = 1. It can be
shown this occurs only when A is diagonalizable with integer entries.

__ What really happened is that A defined a representation of the universal cover
S1 = 4R, and then we need p to vanish on the kernel of the covering map S! — S'.

2.4. (Oct 29) Representations of SLy(R), SUs, and SO3(R).
2.4.1. The linear group of a Lie algebra?

THEOREM 2.4.1.1 ([Eti24],11.2). Suppose G is a linear group, f : L(G) —
End(V) is linear and preserves the bracket, and G is simply connected. Then there
exists a representation p : G — GL(V') such that dp = f.

This follows from Lie’s three theorems on the existence of certain Lie groups.
We won’t discuss that. In the main case of interest, U(n), we’ll be able to construct
representations of the group as needed.

2.4.2. Representations of SLy(R).

EXAMPLE 2.4.2.1. Key source of representations: suppose G is a linear group
acting smoothly on a manifold X. Then for a € L(G), we obtain a vector field @
on X, which at a point x is the tangent vector

d
Ay = —etx el X.

=0

Now when G acts on X, then G also acts on functions C*°(X) by g- f(x) = f(g~!)z.
If V.C C*°(X) is a subrepresentation, p : G — GL(V'), then dp is related to the
above by

since %f oe t—g = —df.
Let G = SLy(R). Then
slb(R) = L(SL2(R)) = {4 € MaR | tr(A) =0} =.
The Lie algebra sly = L(SLy(R)) has basis

0 1 0 0 10
(o) o(Go) G b))

which satisfy the relations
[H,E)=2E,[H,F) = —2F,[E,F] = H.

Consider SLy(R) acting on X = R?. Inside of C*°(X), we have the polyno-
mials C[z,y] in linear coordinates z,y for the plane. SLo(R) stabilizes Clz, y]m,
the degree m homogeneous polynomials. What is the action of sly(R) on Clz, y],,?
We may compute the associated vector fields.

SO

@m0 = o
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Thus 9 9
ezl 0
w@x yay
Similarly
tE 1 t
= 1)
% d d of
%f(etE(xa y))'tzo = %f(x + ty, y)|t:0 = y%;
and so 5
E=y—.
Yor
Finally,
- 0
F=x—.
xay

THEOREM 2.4.2.2. Clz,y|, is a simple representation of SLa(R) of dimension
m + 1. Every simple representation of SLa(R) of dimension m + 1 is isomorphic
to Clz, y]m-

PRrROOF. By Proposition [2.3.2.2) C|x,y],, is simple over SLa(R) if and only if
it is simple over sls.
Let U be the algebra
U=C(E,F,H)/([H,E] —2E,[H,F] +2F,[E,F] — H).

Then finite-dimensional modules over U are exactly a vector space V equipped with
three operators E, F, H : V — V satisfying the same relations as in sl,. By HW 7,
problem 1, there is one simple finite-dimensional module for U of dimension m + 1,
characterized by the fact that there is a vector v such that
Hv =muv, Fv = 0.

(See also [Eti24, p. 11.16]) Note that E acts on C[z,y],, by —y-2 and H acts on
Clz, y]m by ya% — x%. Thus y™ € Clx, y|m satisfies Ey™ = 0 and Hy™ = my™.
Since Cl[z,y]n has dimension m + 1, the dimension of the corresponding sls(R)-
representation, Clx,y], is a simple representation of sla(R). Since SLy(R) is
connected, it is also a simple representation of SLy(R).

Thus Clz,y|,, is simple. Now let V' be a simple representation of SLs(R)
of dimension m + 1. Then there is an isomorphism f : Clz,y|, — V of sls-

representations. Since SLs(R) is connected, Proposition [2.3.2.2] shows f is also
SLy(R)-linear, so V 2 Clz, y]m as SLa(R)-representations. O

2.4.3. Representations of SU;. Observe
suy = L(SUy) = {x € My(C) | #* = —z,tr(z) = 0}.
This has a basis

{0 4 (0 -1 (i 0
=\ o) =\ o) 7 \0o i)
over R, the Pauli matrices (or ¢ times them? I'm not a physicist).

Cram 2.4.3.1. L(SUy) @r C = L(SLs(R)) ®r C = {& € Ma(C) | tr(x) —
0} € M>(C).
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H H H H
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FIGURE 1. The simple representation of SLy(R) of dimension m+
1. F and F are “raising” and “lowering” operators.

This can be explicitly written in formulas:
1 1
H=io, EZE(iUw—ay) F:§(iaw+ay)
Note that the complex representations of L(G) only depend on L(G) ®g C. Thus

COROLLARY 2.4.3.2. The representations of sus are the same as the represen-
tations of sla(R).

So, the simple representations of SUs, are exactly Clz,y],,. Since SUs is com-
pact, this determines all finite-dimensional representations of SU;. What are the
character of these representations?

LEMMA 2.4.3.3. The character of SUy on Clx,yl,, is
A m I o >\m+1 _ /\7m71
Xm(( )\_1)>—/\ +A + 4 A :—)\_)\—1 .

Since every matrix in SU, is diagonalizable, to give the character it is enough
to give its values on diagonal matrices.

2.4.4. Representations of SO3(R) and the quaternions. Let H be the
algebra of Hamilton’s quaternions: H has basis {1,4,,k} and algebra structure
determined by the relations

i =52 =k? =ijk = —1.

This algebra is not commutative since ij = —j¢. This algebra has a conjugation

ag + a1t + asj + azk = ag — a19 — asj — ask.

Note that ij = k = —k = ji = ji. Similar computations for the other basis vectors,
extended by bilinearity, show that for z,w € H,

ZW = WZ.

Thus we have the real part R®(z) = 3(z+%) and imaginary part 3(z) = £(2—72).
The space of imaginary quaternions is three-dimensional, spanned by {i, j, k}. For
z € H,

2Z =2Z = 2Z.
Thus |z| = v2Z € R; it is given by the explicit formula

lao + ari + azj + ask| = \/a3 + a3 + a3 + a3.
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Every z € H\ 0 is a unit with

1
-1 _ _

DEFINITION 2.4.4.1. The group of norm 1 quaternions is
U={zeH]||z|=1}.

U is a subgroup of H*. As a manifold, it is S, the unit sphere in R*.

THEOREM 2.4.4.2. U = SU,.

PrOOF. The ring H is not commutative. There is an action of H on the left
and H on the right; these commute with each other. Consider C acting on H
by right multiplication by R + ¢R. This makes H into a complex vector space.
Consider ¢ : H — Endc(H) = M3(C) given by left multiplication. This map is
injective. A quaternion z = ag + a1i + azj + azk acts in the basis {1, j} as follows:

ag + ali —ag — a;;z')

plao + ari + azj + ask) = (az —agt ag— ait

Thus ¢(z) = cp(z)t. Note also that det(p(z)) = |z|%.
For u € U, 4 =u"1, so p(U) C SU,. Conversely, if

= (5U11 5512) € SUs,

T2l T22
then since det(z) = 1,

ol [ T2 T2
—T21  T11
Then z=! = T’ implies 92 = T17 and a1 = —212. Thus x = p(u) for some
quaternion u € H. As 1 = det(z) = |u|?, we conclude u € U. O

2.5. (Oct 31) SO3(R). The unitary trick.

2.5.1. Representations of SO3(R). Consider the subspace R® 22 I C H of
imaginary quaternions; it is three-dimensional. Conjugation of u € U preserves
conjugation, as

wru—! = v 17w = uTu .

Thus conjugation by U preserves 1.

THEOREM 2.5.1.1. U/{x£1} = SO3(R).

PRrROOF. For z,y € I, define an inner product by
(z,y) = —R(zy).
In terms of coordinates, this is exactly
(T18 + 22] + 23k, Y10 + Y2j + ysk) = w191 + 22y + T3Y3,
that is, the dot product. I claim that conjugation by u preserves the dot product: if
u € U, then u preserves the product, and u preserves real and imaginary products
since conjugation with v commutes with the conjugate. Thus
(uzu™" uyu™") = (z,y).

This defines a map
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Since left and right multiplication by u € H have determinant |u|?, we see U —
O3(R) has image in SO3(R).
This map is surjective, which can be seen from the following two claims:

CLAM 2.5.1.2. let uw € U,u = kg +v for kg € R and v imaginary. Then there
exists unique 0 such that u = cos(0) + sin(0)v’ where v’ is in the unit sphere of
maginary quaternions.

CLAM 2.5.1.3. The action of cos(0) + sin(0)v’ is a rotation of 20 around v'.

O

COROLLARY 2.5.1.4. There is one simple representation of SO3(R) of each odd
dimension, and no simple representations of even dimension. The simple represen-
tations are given by

SUz ——— GL(C[z, yl2m)

SO3(R)

PROOF. If W is a simple representation for SO3(R), it is also simple after
precomposing the action with SUs — SO3(R). Now the kernel of SU; — SO3(R)
is £1. £1 acts on the simple SUs-representation C|[xz,y]; by (—1)¥. Thus this
representation factors through SO3(R) if and only if & is even. O

EXAMPLE 2.5.1.5. Clx,y]s is isomorphic to R?® ®g C as a representation of
SO3(R), where SO3(R) acts on R? by rotations.

The representations C|z, y]a,, of SO3(R) are known to physicists as spherical
harmonics.

2.5.2. Reminder on complex analysis. Let U C C™ be open.

DEFINITION 2.5.2.1. f: U — C is holomorphic at z € U if f is C' near 2 and
D.F : C" — (C is C-linear.

The condition of C-linearity implies f satisfies the Cauchy-Riemann equations
in each variable.

PROPOSITION 2.5.2.2. f is holomorphic if and only if for all x € U, f is given
by a convergent series

f(2) =) calz—2)* =) calzr — 1) (22 — 22)*2 -

PrOPOSITION 2.5.2.3. If0 € U C C" is open and connected and f : U — C' is
holomorphic, then f|ynr» = 0 implies f = 0.

PROOF. The Taylor expansion at 0 can be computed by f|ynr». Thus f =0
in a neighborhood of 0. Analytic continuation implies f =0 on U. (]
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2.5.3. Holomorphic linear groups.

DEFINITION 2.5.3.1. A closed subgroup G C GL,(C) is holomorphic if and
only if G is locally given by the zero locus of a set of holomorphic functions.

EXAMPLE 2.5.3.2. GL,(C),SL,(C),0,(C), Sp2,(C) are all holomorphic.

LEMMA 2.5.3.3. A closed subgroup G C GL,(C) is holomorphic if and only if
L(G) € M, (C) = L(GL,(C)) is a C-linear subspace.

PROOF. First suppose G is holomorphic. Let a € L(G); then e!® € G for all
t € R. We want to show e*® € G for all z € C. Suppose f is a holomorphic function
vanishing on G. Then ¢(z) = f(e**) is a holomorphic function on C vanishing on
R. Thus ¢ = 0. As this holds for all f, we find e** € G for all z € C. Thus L(G)
is a C-linear subspace of M, (C).

Now suppose L(G) is C-linear. Pick a C-linear complement V to M, (C).
Cartan’s theorem implies that there is an open neighborhood U C M, (C) such
that

f:L(G)®V = GL,(C),
fludv) =e%e’
satisfies f(U)NG = f(UN L(G)). Then

fU)NG ={g € GL,(C) | n(f(g)) = 0}
where 7 : M,,(C) — V is the projection onto V. These are holomorphic equations
since the projection M, (C) — V is C-linear. Thus G is holomorphic at 1. Since G
is a group, G is holomorphic. O

EXAMPLE 2.5.3.4. U, is not holomorphic since L(U,,) is not closed under mul-
tiplication by i.

DEFINITION 2.5.3.5. If G is a holomorphic linear group, a holomorphic repre-
sentation is a representation p : G — GL,(C) which is holomorphic.

THEOREM 2.5.3.6. If G is a holomorphic linear group, then a representation
p: G — GL,(C) is holomorphic if and only if dp is C-linear.

PROOF. If p is holomorphic then dp is C-linear. Conversely, on a neighborhood
1eU CG, p|ly =expodpolog, so if dp is C-linear, then p|y is holomorphic. Since
G is a group, p is then holomorphic. (I

THEOREM 2.5.3.7 (Weyl). Holomorphic representations of GL,(C) are com-
pletely reducible. A simple representation of GL,(C) restricts to a simple repre-
sentation of U,.

Proor. Let gl,, = L(GL,(C)) and u, = L(U,). The key of the proof is that
“uy, is the imaginary axis of gl,,.”

Observe that for © : GL,(C) — GL (C) given by ©(g) = (g*)~! that U, =
GL,(C)®. If § = dO, then (a) = —a’, so

Up = (g[n)0=1
Since 62 = 1,
al, = (a1,)"~" @ (g1,)" =" = uy + iu,.
Let V be a holomorphic representation of GL,,(C). As U, is compact, Resy, V
is completely reducible. If Resy, V' is simple, we are done. If Resy, V is not simple,



46 2. REPRESENTATIONS OF THE UNITARY GROUP

then there is a decomposition ResV = V' @& V" over U,,. We want to show that V'
decomposes in the same way for GL,(C). Let p € End(V) be projection onto V.
Then p is Uy,-linear. Define f : gl,, — End(V') by

f(a) = exp(a)p — pexp(a).
Since V is holomorphic, so is f. Since p is Up,-linear, f(u,) = 0. Since u,, is the
imaginary axis of gl,, f = 0. Thus p is linear over exp(gl,). Since GL,(C) is
connected, this implies p is GL,,(C)-linear, and we are done. O

Left open is the question of which representations of U,, extend to a holomorphic
representation of GL,(C).

2.6. (Nov 5) Representations of U(n)

REMARK 2.6.0.1. A complex linear group G is reductive if it has “compact
imaginary part”. We list some examples together with their “imaginary part”
e (SL,(C),SU,);
* (0,(C),0,(R));
[ ] (Spgn(C), San(C) N Ugn)
There are other definitions of reductive in other settings. They are called reductive
because their holomorphic representations are completely reducible.

2.6.1. Matrix entries. For a representation V' of G, we have the matrix
entries

act* : V'@V = C(Q),
which sends f ® v to the functions g — f(p(g)v).
i IV =V'@®V”, then imact], = imacty, +imacty,.
ii. If V' is simple, then actj, is injective;
iii. if V and V' are nonisomorphic simples, then imact}, and imact}, are
orthogonal with respect to the Haar integral.

DEFINITION 2.6.1.1. The ring of representative functions of a compact group
G is
F(G)= Zimacti‘/.
%

LEMMA 2.6.1.2. The ring of representative functions is a ring.
PrROOF. If f@v e V*®@V and f'®@v' € (V')*®@V’, then

flg)f'(gv") = (f @ f)(g(v @)
Thus act*(f ® v)act*(f’ ®v’) is in the image of the matrix entries for V@ V’'. O
LEMMA 2.6.1.3. i. F(Uy) = Clayl}t;—4[1/ det], where zi; : Uy, — C
takes a matriz to its ijth entry.

ii. Every Up,-representation is a summand of some (C")®* @ de
k> 0.

t®¢ where

PRrOOF. First note that x;; is a matrix entry of U, on C", and 1/det is a
matrix entry of the 1-dimensional representation with character 1/ det. Since F(U,,)
is a ring, C[z;;][1/ det] maps into F(U,). This map is injective since functions in
Clz;;][1/ det] are holomorphic, and holomorphic functions on GL,,(C) vanishing on
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U,, are 0. Note also that Clz;;][1/ det] consists of matrix entries of (C™)®* @ det®*
for k£ > 0.

Conversely, note that C[Rz;;, Sz;;] is dense in C(U(n), C) by the Stone-Weierstrass
theorem. Also C[Rz;j,Swi;] = Claij,Zi;]. But for x € U(n), 27! = z, so
Clzij, zi;] = Clayj][1/det]. Thus C[z;;][1/det] is dense in C(Uy,). Since U(n)
is compact, this implies C[z;;,1/det] is dense in L? norm, so its orthogonal com-
plement is zero. Now suppose that im act};, € Clxz;;][1/ det]. Since distinct simples
have orthogonal matrix entries, this implies im actjy, is orthogonal to Clz;;][1/ det],
so imact, = 0, contradicting that W is a simple representation. Thus F(U,) =

C[xij}[l/det].
Since every matrix entry is a matrix entry of some (C")®* @det®”, every simple
representation appears in such representations. ([l

As a corollary, we see that every U, -representation is the restriction of a holo-
morphic representation of GL, (C).

EXAMPLE 2.6.1.4. The matrix entries of U(1) are C[z,271]. The element 2"
corresponds to the irreducible holomorphic representation z +— 2™ : C* — C*.

2.6.2. Weight spaces, upper and lower triangular matrices. In GL,(C),
let T' be the diagonal matrices, B be the upper triangular matrices, U the upper
triangular matrices with 1’s on the diagonal, and U_ the lower triangular matrices
with 1’s on the diagonal. Note that B = TU, and that representations as such
products are unique. The Lie algebra gl, has basis £;; for 1 < 4,5 < n. In terms
of these, the groups T, B, U, U_ have Lie algebras

t = span;{E;; },u = span;<;j{E;j},u_ = span;>;j{E;;}.

If W is a representation of GL,(C) (now and later holomorphic), its restriction
to T decomposes into simple representations of 7. Since T' = (C*)™, the simple
representations of T are indexed by Z™, where
My

mEZ" = pp(z1,...,2n) =21 - 2

So we can write
Resr W = @ W(m).
mezZm
We have Ej;|w(m) = m; since m; is the differential of p,, on Ey;.

Cram 2.6.2.1. If W is a holomorphic representation of GL,,(C), then E;;W (m)
W(m + e; —e;), where e; is the ith standard basis vector of Z™.

PROOF. Observe that [Eyk, Fij] = (0ki — 0xj)Eij. Thus if w € W(m),
EwEijw = E;j Egw + [Egg, Eijlw
= mgEyw + (Oki — Okj) Eijw,
sow € W(m+ e; — ej). O

N

DEFINITION 2.6.2.2. The dominance order on Z™ is defined by m > m’ if
for all 7.

Now m +e; —e; > m if and only if 4 < j. So applying u raises weights in
dominance order, while applying u_ lowers weights in dominance order.
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DEFINITION 2.6.2.3. Let W be a holomorphic representation of GL,(C). A
highest weight vector is a nonzero w € W which is fixed by U and is a common
eigenvector for T

LEMMA 2.6.2.4. IfV # 0 is a holomorphic G L, (C)-representation, then V has
a highest weight vector.

PROOF. Let m be maximal in dominance order such that V(m) # 0. Then if
i <j, Ei;V(m) CV(m+e; —ej) =0. Thus v € V(m) is a weight vector for T" and
is fixed by U, as desired. Il

COROLLARY 2.6.2.5. IfV is a holomorphic GL,,(C)-representation and dim VV =
1, then V is simple.

ProoF. Holomorphic representations of GL,,(C) are completely reducible. If
V=V'@V"then VU = (V)Y@ (V")V. If dim VY = 1 then one of (V')V or (V)V
is zero, which implies that one of V' or V" is zero. Thus V is simple. |

DEFINITION 2.6.2.6. A weight ¢ € Z" is dominant if {; > £;11 for all i < n.

THEOREM 2.6.2.7 (Highest weight theorem). i. Each simple holomorphic
GL, (C)-representation has a unique highest weight vector up to scaling.
it. Sending a representation to the weight of its highest weight vector is a
bijection between simple representations and dominant weights.

We'll prove this next time.

2.7. (Nov 7) Proof of the highest weight theorem
2.7.1. Examples.

EXAMPLE 2.7.1.1. Consider A*C". This has weight basis e;, A --- A e;, for
iy < --- <ip. If 1 <4y ori; +1 <441 then applying a suitable E;; for i < j gives
another basis vector. Hence (AFC™")V = C-e; Aey A--- Ae,. We conclude that
AEC™ is irreducible with highest weight wy = (1,...,1,0,...,0) with k appearances
of 1. This is the kth fundamental weight of GL,,.

EXAMPLE 2.7.1.2. Consider Sym”* C". The vectors fixed by U are exactly scalar
multiples of ef. Thus Sym* C" is simple, and its highest weight is (k,0,0,...) =
kwl.

EXAMPLE 2.7.1.3. The representation @7_, Sym* (A‘C™) where k; > 0 for
i < n has a highest weight vector with weight

A=(ki+ - +knkot+ - +Ekn ... kn) =kw + kows + - + kpwp.

Thus V) appears in @, Sym" (ANPC™). Tf X = kywi+- - +kpwp, then k; = A\j— 11
for ¢« < n, and so A\ can be written in this form for k; > 0 when ¢ < n if and only if
A is dominant.

2.7.2. LU decomposition. An LU-decomposition of a matrix a is a decom-
position A = XY where X is lower triangular and Y is upper triangular. We will
focus on when X =wu_ € U_ and Y = b € B. Note that decompositions u_b are
unique since if u_b = u’_ V', then u"'v/ =b(l')"' € U_N B = {1}.

Define the ith principal minor f;(A) of a square matrix A to be the determinant
of the submatrix with rows and columns in {1,2,...,4}.
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LEMMA 2.7.2.1. Let k be a field. A matriz g € GL, (k) can be written as u_b
foru_ e U_,be B if and only if fi(g) #0 for all1 <i<n.

Proor. If fi(g) = g11 # 0, then by scaling column 1 we can make g1; = 1,
and then by adding row 1 to lower rows and column 1 to later columns, we can
clear the first row and column of g. Thus there are x € U_,y € U such that

0
gy = (9(1)1 g/)

where g’ € GL,—1(k). Note that f;(g) = fi(zgy) = g11fi-1(9), so fi—1(g") # 0 for
all . By induction, ¢’ = a'ty’ for 2’ e U_,t € T,y € U for GL,,_;. Then

_ 1 0 g O 1 0
g = 0 "E/ 0 t 0 y/ y7
sogeU_TU.

Conversely, if xty € U_TU, then f;(xzty) = f;(t) # 0 for all . O

We used in the proof that if € U_ and y € U, then f;(zAy) = fi;(A). Thus
fi € C[:L‘ij}U*XU.

COROLLARY 2.7.2.2. U_TU C GL,(C) is dense.

PrROOF. It is the complement of the algebraic hypersurface fifo--- f, =0. O

REMARK 2.7.2.3. The Bruhat decomposition states that for each g € GL, (C),
there is a unique w € X, such that ¢ = u_7b for u_ € U_ and b € B. The case
m =1 is the big cell.

2.7.3. Proof of highest weight theorem.

PROOF OF THEOREM [2.6.2.71 Write C[GL,] = Clx;;][1/ det], and let C[T] =
C[ziﬂ] be the polynomials on the torus T'; z; is the restriction of x;; to T. As
C|GL,] is the ring of representative functions, it is the direct sum of V* @ V
running over isomorphism classes of simples V', so

C[GLn]U_XU _ @ (V*)U_ ®VU

V simple
Since U_TU — GL, is dense, the restriction map C[GL,)Y-*V — C[T] = C[z{!, ..., zE!]
is injective. Now

filr =21z,

SO
mi My __ £M1—M2 M2 —mM3 Mn—1—Mn pm,
Zl ...Zn"_fl f2 fn—l fn"_
The polynomials fi,..., f, are irreducible and pairwise distinct. Since C[z;;] is a
UFD, we have

JirTme L prie T fiine € Cly;][1/ det] < my > myyq for all b

n

Thus the image is exactly Clz1, . .., zn_1, 2], 50 C[GL,]Y-*V = C[f1, ..., fa_1, [T].

Consider now the action of T" on GL,, by right multiplication. Write X (m) for
the m-weight space of X with this torus action. Since T normalizes U, T acts on
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the U-fixed vectors, so

Clfr,-.-, a1, o ](m) = CIGL,)"= Y (m)

(@ U®vU>( )

Vv

=P’ evm".
>

‘We have
. 11 1 m is dominant
dim C[f1,..., fa-1, fi ](m) = .
0 else

Thus

U, 1 m dominant
dnn@ @V ) {O else. )
We know that (V*)U- is always nonzero by Lemma Thus V(m)Y # 0 only
when m is dominant, and if m is dominant, there is a unique V with V(m)Y # 0,
and in this case dim V(m)Y = dim(V*)V- = 1.

Since every representation of GL,, has a highest weight vector, dim(V*)V- =1
for all simple V. By duality, for all simple V, dim VU~ = 1; since U_ and U are
conjugate in GL,, dimVY = 1 for all simple V. Thus V has a unique highest
weight vector up to a scalar.

We have shown assigning V' to the weight of V'V is well-defined and injective.
The map is surjective since C[GL,]Y-*Y(m) # 0 for dominant m, so a representa-
tion with highest weight m exists. (I

DEFINITION 2.7.3.1. For a dominant weight A\ € Z™, let V) be the simple
holomorphic representation of GL,, with highest weight .

REMARK 2.7.3.2 (Borel-Weil theorem). We can construct the representation
V) of highest weight A € Z" as the left U_-fixed vectors with left T-weight —A\.
That is,

{¢: GLn(C) — C | ¢ holomorphic, ¢(b—g) = f(b-)d(g)}

where f = ff“*)Q ---. That is, Vy is the holomorphic induction of the character A
of B_ to GL,. In terms of algebraic geometry, Vy = H°(G/B_,O(\)) for a certain
line bundle O(X\) on G/B_.

2.8. (Nov 12) Representations of SL,. Restriction to GL,,_;

2.8.1. More examples of highest weight representations.

EXAMPLE 2.8.1.1. (C™)* has basis {f1,...,fn} dual to the standard basis
€1,...,en. U has the property that Ue; C e; + span{ey,...,e;—1}. Dually, Uf; C
fi + span{fiz1,..., fn}. Thus ((C")*)V = Cf, of weight (0,...,0,—1). Thus
(Cn)* = V(O,...,o,—1)~

EXAMPLE 2.8.1.2. V) ®det = V3 (1,..1). For det(U) =1, so
(Va @ det)? = VY @ det,
which has torus weight A + (1,1,...,1).
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ExXAMPLE 2.8.1.3. Combining the above two examples gives that (C")* ® det &
V(1,.“,1,0) = A" IC". How can this be seen? It follows from observing that the
wedge product

C"@A"IC" — A"C™ = det
is a GL,-equivariant perfect pairing.

2.8.2. GL, versus SL,. For every g € GL, and A € C*, det(\g) = A" det g.
Thus, every matrix in GL, is the product of a scalar matrix and a matrix of
determinant one: GL, = C*SL,. Such expressions are ambiguous since C* N
SL,, = pin, the group of nth roots of unity (embedded as scalar matrices into SL,,).
Thus

GL, =C* x SL,/un.

What do representations of SL, look like? First, we need to think about

weights of the torus. Let 7' = T N SL,, the diagonal matrices of determinant one.

We have a map -
Z" — Hom(T,C*)

coming from restriction from G'L,. The restriction of (1,1,...,1) is trivial since
this corresponds to diag(z1,...,2n) — 21 -+ zn, which is trivial on T. Thus if we
define

A=Z"/Z-(1,1,...,1),
we find a map A — Horq(T, C*). This is an isomorphism, which can be seen by
picking an isomorphism T = (C*)"~ 1,

DEFINITION 2.8.2.1. A € A is dominant if A\; > A\; 1 for all i. Let A4 be the
set of dominant weights.

This is well-defined.

THEOREM 2.8.2.2. The simple holomorphic representations of SL,(C) are in
bijection with Ay .

ProoOF. Let W be a simple G L,-representation. Then the center C* acts by
scalars on W. If U C W is SL,-invariant, then U is also invariant under the action
of scalars, so U is GL,-invariant. Thus W is also simple for SL,,.

Since Vi (1,...,1) = Va @ det, and det is trivial on SLy,, we find a well-defined
map from A, to simple SL,-representations: send A to Resgy,, V).

7" <—— {simples for GL,}

| Jre

Ay -——-- » {simples for SL,}

This map is injective: if A\, € Z, and V) and V), are isomorphic when re-
stricted to SL,, then (V3)V and (Vi)Y have the same weight for 7. Thus A = X
mod (1,...,1).

This map is surjective: let p : SL, — GL(W) be a simple S L, -representation.
Then Z(SL,) = u, acts by scalars, say ¢ — (™ for some m € Z/nZ. Pick m € Z
such that m =m mod n, and define p: G — GL(W) by

p(Ag) = A"p(g)
where g € SL,, and A € C*. This is well-defined by our choice of m. d

We see that representation theory for SL,, and GL, is not so different.
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group GL, SLy, PGL,
center (Ofe Lhn, 1
T Z 1 Z/nZ
advantage? connected center | simply connected | simple
Langlands dual GL, PGL, SL,

TABLE 1. SL, and friends.

2.8.3. Restriction from GL, to GL,_;.

THEOREM 2.8.3.1. (GL,,GL,_1) has simple branching. For u € Z"~', A € Z"
both dominant, [V, : ResVi] =1 if and only if

M2 2 A2 2 Up—1 = Ay

A more refined version is restricting not just to GL,_1 but to GL,,_1 X GLy <
GL,. The simple GL,_; x GLi-representations are V,,MV,, for u € Z"~1 dominant
and m € Z.

THEOREM 2.8.3.2. (GL,,GL,—1 x GL1) has simple branching. For \ € Z"
dominant, p € Z"~' dominant, and m € Z, [V,, ® V,,,, Res V\] = 1 if and only if

A > g > A1

for all i and
n n—1
m = Z )\i — Z i -
i=1 i=1

Proor. Let U’ C GL,_1 be the strictly upper triangular matrices in GL,,_1,
and let 7" C GL,_1 be the diagonal matrices. U/U’ has coset representatives

{5 e}

Thus U_\U_TU/U’ has coset representatives

=16 2)

Restricting to S gives an injective map

Clzy][1/ det]V-*V" = C[S] = C[2f, ..., 25, 21, ., Tn1)-

rTn

teT’,xeC”l,zeCX}.

For g € GL,, define f!(g) to be the determinant of the submatrix formed by rows
{1,2,...,i} and columns {1,2,...,4 — 1,n}. Then f/ is invariant under U_ x U’,
and on our orbit representatives,

fz, <t (E> = f7_1(t)xl =21...%—-1%;.

0 =z,
Thus,
Clets. ..z, wna] = Clff, . f fa o foal.
As before, a monomial in {fif, ..., f&, fi,..., f._,} is in the image of C[z;;][1/ det]

if and only if the exponents of f; are nonnegative for ¢ < n. To compute the full
image, we need to analyze the weights of T' x T acting on both sides. The weights
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here are indexed by Z" x Z™. Observe x; has weight (—e;, e,), so f/ has weight
(—wi,wi—1 + e,). I claim that
A = {(—wiwi) Fiey U{(—wi, wim1 + en) Hiy

is linearly independent in Z™ x Z"™. For (—w;,w;—1 + en) — (—w;,w;) = (0, e, — €;),
and now the claim is evident. Thus each monomial {fli, e fE AL Y hasa

different weight. Since C[z;][1/ det]V~*V" is a T x T-representation, it decomposes
into weight spaces, and thus

Clay)[1/det]’"*Y" = Clfr,..., fif, fio-- - L)

To compute Res V), we compute the space of vectors with left torus weight —\. If
A= kiwy + -+ + kpwn, then the possible weight vectors are

(=X, (n,m)) = Z pi(—wi, wi) + gi(—wi, wi—1 + ex).
Pit+qi=kipi,qi >0

Since A is linearly independent, there is a unique such decomposition if one exists.
Thus (p, m) appears in Resgr,, ,xcr, Va if and only if

(p,m) = Z(piwi + qiwi—1) + Z(hen~
I claim (p,m) is of this form if and only if A; > u; > A1 for all ¢ and
m=3" N — """ p;. Forif p is as above, then

n n
pi= i+ Y 4
=i

j=i+1
SO
n
Z pj+a;) = pi > Z P+ qj) = Ait1.
Jj=t j=i+1
Conversely, if \; > p; > Aiy1, then set p; = p; — A1 and ¢; = A — . O

2.9. (Nov 14) Weyl character formula

2.9.1. Characters. What is the character of the representation V) with high-
est weight A of GL,,?

DEFINITION 2.9.1.1. For A € Z" dominant, y € Z[2T,..., 2] is the character

rn
of V) restricted to the diagonal matrices T

The restriction of the character to T determines the character, since diagonal-
izable matrices are dense in GL,,(C).
By definition xx = ), czn (dim Vi (m))2zy"" - - - 2]'». It only depends on Resr V.

REMARK 2.9.1.2. Theorem [2.8.3.2] gives the following: write p »* X\ if \; >
pi > Aip for all 4, and write |A| =3, A\;. Then

n
i | —=lpi—1l
w= > Il= :

wo p1 S S = i=1
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2.9.2. Weyl group. What is the structure of Resy V)7
DEFINITION 2.9.2.1. The Weyl group of GL,, is N(T)/T.
ProrosITION 2.9.22. N(T) =%, -T.

PROOF. Observe that C™ decomposes into one-dimensional simultaneous eigenspaces
forT as C-e1®---C-e,. Each g € N(T') sends an eigenspace for T to an eigenspace
for T. Thus there is a function o : [n] — [n] such that ge; € Ce,(;). Since g is
invertible, o is a bijection, so ¢ € ¥,,. Then 0~ !ge; € Ce; for all i, which implies
o~ tg € T. Finally, note that ¥, N7 = 1. |

COROLLARY 2.9.2.3. The Weyl group of GL,, is ¥,,.

For g € N(T), it follows that g permutes the weight spaces in Resy V' for
any holomorphic GL,-representation V. Since T preserves the weights, this action
factors through N(T)/T. Now

tov = oo~ o),
so if v € W(¥), then ov is in the weight space o~ 1/.

COROLLARY 2.9.2.4. xx is a symmetric function: x € Z[zi,. .., zE]>n.

’r n
REMARK 2.9.2.5. Symmetry is not evident in the formula[2.9.1.2

EXAMPLE 2.9.2.6. If V has highest weight A = (m,ma,...) then V* has high-
est weight wo(—A) = (—my,, =My, .. .), where wo(i) = n+ 1 — 4. For in the proof
of the highest weight theorem, we see that (V*)V- @ VU is spanned by the function
fn with weight A for the right torus action. Then f) has weight —\ for the left
torus action, so (Vy*)V~ has weight —\. Further, the involution wg(i) =n+1—i
conjugates U to U_, so (Vy)V = (Vy)U~ has weight wo(—A), as desired.

The Weyl character formula expresses the character x, which is symmetric, as
a ratio of antisymmetric functions (determinants).
Recall that W has a character sgn = det W1.

DEFINITION 2.9.2.7. f € Z[ziE, ..., 25 is antisymmetric if f(wz) = sgn(w) f(z)

’rTn
for all w € W. We write Z[25, ..., 2]%8" for the group of antisymmetric functions.

DEFINITION 2.9.2.8. A\(2) = > _ 5. sgn(w)z¥?.

By definition, Ax(z) is the determinant

A1 A1 A1
27z ZQQ
Ax(z) =det | .
An An An
21" 2 Zn"

DEFINITION 2.9.2.9. p=(n—1,n—2,...,0) € Z".
A,(z) is exactly the Vandermonde determinant A,(z) = [[,;(zi — 2;)-

THEOREM 2.9.2.10 (Weyl character formula).

xa(2) = Aﬁ:é)z)-
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ExXAMPLE 2.9.2.11. Consider G = GLs and let A = (k,0). Then p = (1,0), so

Shl k1
ApgpAy=2— 2 = 4 Ny b 2
Z1 — 22
which is indeed the character of Symk C2. When restricted to SLs, this recovers
formulas we found earlier.

2.9.3. Weyl integral formula. We will prove the Weyl character formula
using orthogonality of characters of U(n), following [Ada69]. To use orthogonality
of characters, we need an effective formula for the Haar integral on U(n).

LEMMA 2.9.3.1. Let V be a finite-dimensional vector space and g € GL(V).
Then det(Ad(g)|End(V)) = 1.

PROOF. We may identify End(V) = V ® V* and Ad(g) with (9@ 1)(1®g71)*.
Now if V' and W are vector spaces and T : V — W, then

det(T ® 1) = det(T)3m W,

Thus
det(Ad(g)) = det(g)™ V" det((g~1)*)4mV = 1. 0

THEOREM 2.9.3.2. Let Tr = (S*)™ C U(n) be the diagonal unitary matrices.
Then there exists a real-valued smooth v : TR — R such that for all class functions
fronU(n),

(9)dg = | f(z)u(z)dz.
U(n) Tr

Moreover
1

1
u(z) = = [ (i = 2) = 1 4,(2) .
i#]

PrOOF. Write G = U(n) and T = Tg for this proof.

Consider the map 7 : G/T x T — T defined by (g, 2) = gzg~'. Since every
unitary matrix is diagonalizable, 7 is onto. Further, if a unitary matrix s has
distinct eigenvalues, then m~1(s) is a free W-orbit (an eigenbasis is unique up to
permutation and scaling). Hence 7 has degree |W|, so

1
dg = — T fir*dg.
/G S@ig = [ gy

Note that if f is a class function, then 7* f only depends on T' and not G/T. We
need to express m*dg as a measure on G/T x T.

Let g be the Lie algebra of G and t be the Lie algebra of T. We can identify
the tangent space of G/T x T at (g,z) with g/t @ t. The tangent space of G at

gzg~! can also be identified with g as a vector space. We need to compute

Drmy . :g/tet—g.
For v in a neighborhood of 1 in T

(g, 2v) = gzvg ™ = (9297 ") (gvg ™),
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so Dr(y.)(v) = Ad(g)(v). For u in a neighborhood of 1 in G/T, w(gu,t) =

gutu’lg’l, SO

Dr, . (u) = guzg™' — gzug™"
= (9297 (92~ ulgz™) ™" —gug™"),
so Drr(u) = Ad(g)(Ad(t~!) — 1)(u). Thus
det D7 = det(Ad(g), g) det(Ad(t~* — 1), g/t).

We can compute both of these determinants after complexifying g, since determi-
nants are compatible with extending the base field. Now det(Ad(g),gl,,) = 1 by

Lemma [2.9.3.1 We have (g/t)c = €D,,; CLi;, and Ad(t™') — 1 has E;; as an

eigenvector with eigenvalue z;/z; — 1. Now
(2i/2 = D(zi/2 = 1) = |2/ 2 — 1* = |z — 2]
since z is unitary. Thus
1 1
u(z) = ] H |zj/zi — 1| = ] H |zi — z; 2.
i<j 1<j
The Vandermonde determinant says [[;_;(zi — 2;) = Ap(2). O
2.9.4. Proof of Weyl character formula.
DEFINITION 2.9.4.1. A € Z™ is regular if all parts of \ are pairwise distinct.
Equivalently, A is regular if the W-stabilizer of \ is trivial.
LEMMA 2.9.4.2. If X and p are reqular weights, then
_— +HW| Ay=4A4,
/ AN(2)Au(2)dz = Wl Ay !
T 0 Ay # XA,

Proor. Note that Ay and A, are sums of W-orbits of characters of T'. If X
has nontrivial stabilizer (a repeated entry), then Ay = 0; otherwise Ay is a sum of
|W| distinct characters. Thus also either Ay = +A,, or the sets of characters are
disjoint. 0

LEMMA 2.9.4.3. The functions {Ax | X dominant reqular} form an integral

basis for the antisymmetric Laurent polynomials.

THEOREM 2.9.4.4 (Weyl character formula). If A is a dominant weight, then
ApXA = A/\+p-

PRrOOF. We can write A,xx = >, n;A,, for some nonegative integers n;. By

orthogonality of the A,’s,
/ |A, X% = n! an
T i

By the Weyl integral formula,

/ A2 = ! / al? =,
T G

so >, n? = 1. Thus exactly one n; is £1 and all others are zero. Thus A,y = +A,
for some dominant regular . The highest weight appearing in the left hand side is
2P 2> with coefficient 1, so p= A+ p and A,xn = A, = Axjp. O
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2.10. (Nov 19) Schur-Weyl duality

For a statement of Schur-Weyl duality, see [Lorl8, §4.7.2].
For the calculation of the highest weight spaces of Homy, (Ly,V®™) where L
is a simple ¥,,-representation corresponding to A - n, see [Lorl8| §8.8].






CHAPTER 3

Modular representations

3.1. (Nov 21) Introduction to modular representation theory

Let k be a field of characteristic p > 0. Let G be a finite group. If p | |G|, then
the module theory of kG is not semisimple, for example, the map kG — k is never
split.

DEFINITION 3.1.0.1. A module is indecomposable if and only if it is not the
direct sum of two submodules.

So we can first break down into direct sums of indecomposable modules, and
then ask what the indecomposables are.

ExampLE 3.1.0.2. Let G = C), the cyclic group of order p. If z € C), is a
generator, then kG = k[z]/(zP — 1). In characteristic p,

(a+b)P =aP +

if @ and b commute. Thus 0 = 2? — 1 = (x — 1)?, so  — 1 is a nilpotent operator.
By Jordan or rational canonical form, every kG module is a direct sum of modules
of the form k[z]/(z — 1) for 1 <i < p.

e There is only one simple module, k.
e There are p indecomposable modules k[z]/(z — 1)¢ for 1 <i < p.
e Only one indecomposable module is free.

This is the simplest example in modular representation theory.
The “next” example is actually much more complicated:

ExXAMPLE 3.1.0.3. Let G = C}, x C},. Then there are infinitely many indecom-
posable kG-modules. See e.g. |Alp86, pp. 27-28]

The answer is to give up on classifying all indecomposables. We many still ask:

i. What are the simple kG-modules? How many are there?
ii. How do the simple kG-modules fit together?

3.1.1. Jordan-Hoélder and Krull-Schmidt theorems. These theorems are
our first theorems on how modules are built from simple modules.

DEFINITION 3.1.1.1. A finite filtration on a module M is a chain of submodules
0O=FkMCFHMC---CFE,M=M.

Instead of asking for M to decompose into simple modules, we could look for
a fitration F' such that F; 11 M/F;M is simple.

59
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THEOREM 3.1.1.2 (Jordan-Hoélder. [Lorl8|, p. 33). Let A be a k-algebra and
let V be a A-module with dim V < oo. If V has two filtrations Fe and F. such
that F;/F;_1 and F!/F]_| are simple A-modules for all i, then the multisets

[Fl/Fo,FQ/Fl,...} and [F{/Fé,le/Fll,]

are equal.

PROOF. We induct on the dimension of V. Suppose F,, F'e are given, and let
We = Fo/Fe_1, W, = F,/F,_,;. Then W; and W] are both simple submodules
of V. So Wi N W] is a submodule of both W; and W{. Thus either W, = W] or
W1 N W] =0. In the former case, we apply the inductive hypothesis to V/Wj.

Now suppose W1 N W] = 0. Then W1 @ W| C V, so let U = V/(W; & W7).
Then U has a composition series [Z1, ..., Z,]. By inductive hypothesis,

Wi, Zv, ..., Zy) = [Wa,...,W,]

and
Wi, Z1,....Z,) = [Wy,...,W,].
Thus
[W] = [Wl,W{,Zh. . '7Z;D] = [W/]a
as desired. [l

Thus, if A is a finite-dimensional k-algebra and L is a simple module, then
sending M to the number of times L appears in a Jordan-Holder series £, (M) is
well-defined.

We have another option on how to break our module into simple pieces: instead
of taking subs and quotients of any kind of module, we could try to break into direct
sums.

THEOREM 3.1.1.3 (Krull-Schmidt. [Lorl8|, p. 38). Let A be a k-algebra and
V' be an A-module such that dimy V < oo. Then two decompositions of V into
indecomposable summands have the same lists of summands up to isomorphism
and reordering.

PROOF. Omitted. It is very similar to the Jordan-Ho6lder theorem. (I

3.1.2. Projective modules.
LEMMA 3.1.2.1 (|Lorl8|, §2.1.1). Let A be a ring and P be an A-module. The
following are equivalent:
. If f: M — M" is a surjective map of A-modules, then every P — M"
lifts to a map P — M :

P
M ——» N

1. Fvery surjective f : M — P splits, i.e. admits a right inverse g : P — M
so that fg =idp.
1. P is a direct summand of a free A-module;
w. If0— M — M — M"” — 0 is an ezact sequence of A-modules, then
0 — Homu (P, M') — Hom4 (P, M) — Hom (P, M") — 0

1s exact.
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PRrROOF. Suppose i. Let f: M — P be surjective. Then the identity map of P

lifts along f:
%
—
Thus i. implies ii.

Now suppose ii. P admits a surjective map from a free module F' by choosing
some generators. Since the surjection F' — P splits, P is a direct summand of F'
Thus ii. implies iii.

Now suppose iii. We know that Hom 4 (A4, —) is exact, and taking direct sum-
mands preserves exactness. Thus iii. implies iv.

Now suppose iv. If f : M — M" is surjective, then for M’ = ker(f) the
sequence 0 - M" — M — M" — 0 is exact. Hence Hom (P, M) — Hom (P, M")
is surjective, that is, every map from P — M" lifts through f. Thus iv. implies
i. O

SEe—_

P

DEFINITION 3.1.2.2. An A-module is projective if it satisfies one of the equiv-
alent conditions of Lemma B.1.2.1]

It is immediate from Lemma[3.1.2:T]iii. that a summand of a projective module
is projective.
How are the simples and the indecomposable projectives related?

DEFINITION 3.1.2.3. A surjection f : M — L is essential if f(M') # L for all
proper M’ < M. A projective cover of a module L is a projective module P with
an essential surjection P — L.

LEMMA 3.1.2.4 (|Ser78|, §14.3, or [Lorl8|, p. 89). If A is a finite-dimensional
k-algebra, then

i. every finitely generated A-module has a projective cover;
1. sending a simple module to its projective cover is a bijection

{simples}/ =« {f.g. projective indecomposables}/ =

PrROOF. Let M be a f.g. A-module.

Pick a surjection F' — M from a finite free module, and let F* — P — M be
a maximal quotient of F' such that P — M is essential (exists since F' is finite-
dimensional). Pick a minimal @ < F' such that @ — P. Then @ — P is essential,
and P — M is essential, so Q — M is also essential.

Since F is free,

P

Q—— P —— M

Then a(F') maps onto P, so since Q — P is essential, a(F) = @ and a is surjective.
Since P is a maximal quotient of F' which is essential onto M, we find @ — P is
an isomorphism. This implies P is a summand of F' and so P is projective.
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Now we show that projective covers are unique up to isomorphism. Suppose
P — M and P’ — M are both projective covers.

Then a(P) - M, so a(P) = P'. Since P’ is projective, a splits, so P = P’ & Q.
Since P — M is essential, ) = 0.

Now suppose L is simple. We claim its projective cover is indecomposable.
For if a : P - L and P = P’ @ P" is a proper decomposition, then a(P’) and
a(P") are proper submodules of L, so a(P’) = a(P”) = 0 and a = 0. The map
{simples}/ =— {proj. indec.}/ = is injective since if P maps onto two different
simples L and L', consider kernels K and K’. Since P — L' is essential, K’ D K.
Similarly K O K’, so K = K’ and thus L = L'

If P is indecomposable projective, then P has some simple quotient P — L.
Let Py, be the cover of L. Then P — L lifts to P — Py, so Py, is a summand of P.
Since P is indecomposable, Pr, = P. Thus the map is surjective. ([l

COROLLARY 3.1.2.5. If A is a finite-dimensional k-algebra, then

1. Bvery indecomposable projective is finitely generated.
11. There are finitely many simple A-modules.

PROOF. If P is an indecomposable projective, then P has a simple quotient L.
If Py, is the projective cover of L, then P — P, so P, is a summand of P. Thus
P=Pp;.

There are finitely many f.g. indecomposable projectives since they are sum-
mands of A, and there are finitely many such due to the Krull-Schmidt theorem. [

3.2. (Nov 26) Reduction modulo p

3.2.1. Grothendieck groups. Cartan homomorphism.

DEFINITION 3.2.1.1. Let A be a finite-dimensional k-algebra. Define Ky(A) to
be the quotient of the free abelian group on all finitely generated A-modules by the
relations [M] = [M/M’'] + [M’] whenever M’ C M is a submodule of M.

The Jordan-Hdlder theorem implies that Ko(A) is free abelian with basis the
simple modules for A.

DEFINITION 3.2.1.2. Let A be a finite-dimensional k-algebra. Define K°(A) to
te the quotient of the free abelain group on all f.g. projective A-modules, modulo
the relations [P] = [P’] + [P"] whenever P = P’ @ P”.

The Krull-Schmidt theorem implies that K°(A) is free abelian on the indecom-
posable projectives for A.

REMARK 3.2.1.3. Lemma implies Ko(A) and K°(A) are free abelian of
the same rank. However, sending simple [L] to [Pr] is not natural as a functor in
A, so the functors Ky and K° are not naturally isomorphic on finite-dimensional
algebras.
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Since every projective module is a module, and every short exact sequence of
projectives splits, we have a map

c: K%A) — Ko(A)
defined by c¢[P] = [P], called the Cartan homomorphism [Ser78, §15.1].

ExaMmPLE 3.2.1.4. For A = kC}, where char k = p, the Cartan homomorphism
has matrix [p]: there is one simple module k with cover k[x]/(x—1)P, so Ko(kC)) =
Z - k], K°(kC,) = Z - [kC,). The filtration F; = (z — 1)P~"k[z]/(x — 1)? has
F,/F;_1 = k, and there are p of them. Thus c[kC,] = p[k].

3.2.2. Reduction modulo p. [Ser78, §15.2]. Our approach to modular
representation theory will come from comparing characteristic 0 and characteristic

.
DEFINITION 3.2.2.1. A p-modular system is a discrete valuation ring (R, m)

such that k£ = R/m is algebraically closed of characteristic p and K = Frac(R) is of
characteristic 0.

o —

EXAMPLE 3.2.2.2. Let R = Z,((,) be the ring formed by adjoining all the
roots of unity of order prime to p to Z,, then p-adically completing. Then R is a

—

discrete valuation ring with maximal ideal pR, and R/pR = F,. K = Q,((y).

ExAMPLE 3.2.2.3. If k is any algebraically closed field of characteristic p, then a
p-modular system exists: R = W (k) is the Witt vector ring over k, and m = pW (k).

ExaMPLE 3.2.2.4. If (R,m,k, K) is a p-modular system and L/K is a finite
extension, then O also defines a p-modular system with the same residue field;
however my, # mmQOyp, for k being algebraically closed implies L/K is totally
ramified.

Fix a p-modular system (R, m,k = R/m, K = Frac(R)). Then we have maps
kG +— RG — KG@G,
which we can use to compare characteristic p and characteristic zero.

DEFINITION 3.2.2.5. A lattice in a K-vector space M is a finitely-generated
R-submodule M7 such that K ® g My = M.

LEMMA 3.2.2.6. Let M be a finite-dimensional KG-module. Then there is an
R-lattice My C M stable under G.

Proor. Let My be some lattice stable under R. Define M; = UgeqgMo. This
is again a lattice and is stable under G. O

Thus, if M is a KG-module, I can get a kG-module from M;/mM;.

LEMMA 3.2.2.7. [Ser78, §15.2] Let (R,m,k,K) be a p-modular system. Let
My and My be two G-stable lattices in a finite-dimensional KG-module M. Then
[Ml/li} = [Mg/mMQ] m Ko(k‘G)

PRroOF. First suppose that mM; C My C M;. Then M; /M, is a kG-module,
and we have a four-term exact sequence of kG-modules:

0— li/mMg — Mg/mMQ — Ml/li — Ml/M2 — 0.
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Since m is principal, mM; /mMs = M, /My as kG-modules. Thus [M;/mM;] =
[Ms/mMs5] in this case.
Now in general, we can assume by rescaling that My C M;. Since M, is a

lattice, m" M7 C M> for some n. Induct on n; the base case n = 1 was established
above. If My = m™ 1M, + M>, then

m" My € M3 C M,
and
mMsz C My € Ms.
Thus [M;/mM;] = [M3/mMs] = [Mz/mMs] by induction. O

DEFINITION 3.2.2.8. Define the decomposition homomorphism d : Ko(KG) —
Ky (kG) by sending [M] to [M;/mM,] for any lattice My C M.

3.3. (Dec 03) Lifting. Brauer characters

ExAMPLE 3.3.0.1. Last time, I promised an example of a KG-module M with
two lattices My, My such that M;/mM; and My/mM; are different kG-modules.

Assume that a primitive pth root of unity {, € R and take G = C, = (z).
Consider M = KC, the regular representation. Then M; = RC), has reduction
M /mM; = kC,, which is indecomposable of dimension p.

On the other hand, let eq,...,e, € KC)p be the idempotents corresponding to
the p simple characters over K; that is

p—1
e; = E Gl
J=0

Then Ms = Rei + -+ + Re, is a lattice in KCp,. Each Re; is stable under C,,.
Since ({, —1)» = (P —1» = 0 mod p, we have p | ({, — 1), s0 {, —1 € m. Then
Re;/me; = k is the trivial representation of C), so My = @!_, k is p copies of the
trivial representation.

3.3.1. Lifting.

LEMMA 3.3.1.1 (Noncommutative Hensel’s Lemma). Let R be a commutative
ring. Let f € R[x] such that (f',f) = (1) C R[z]. If A is an R-algebra complete
with respect to an ideal I, and xo € A/I satisfies f(xg) =0, then

i. there exists x € A such that x = xg mod I and f(z) = 0;
1. such a lift is unique up to conjugation by 1+ I.

PrROOF. Since A is complete, the general statement reduces to the case when
I? = 0. So we may assume that I? = 0. Note that the hypothesis (f, f') = 1
implies f/(zg) is invertible in A/I.

First, we show that a lift « such that f(z) = 0 exists. Suppose that Z is any
lift of zg. f'(Z) is invertible in A since f'(z) is invertible in A/I. Set

v =3 (&) (@)

Note that f(#) € I. Since & commutes with any polynomial in Z, and I? = 0, we
have by Taylor expansion

fla) = f(@) + f'(@) (- (@)~ f(2)) = 0.

Thus a desired lift x exists.



3.3. (DEC 03) LIFTING. BRAUER CHARACTERS 65

Now suppose that y is another lift of zy to a zero of f. Set h = y — x; if

u=1+wv for v € I, then
uru™t =2 4 v, 7],

so the goal is to show that h = [v,z] for some v € A. This claim depends only on
h and x, so we may replace A with the subalgebra Ay generated by h and x. This
algebra is spanned by expressions 2 and 2®hx?, as h is in a two-sided square-zero
ideal. Then J = [z, Ag] is a two-sided ideal in Ag: [z, 2] = 0 so [z, Ag] C I; [z, Ag]
is closed under multiplication by x on both sides, and also by multiplication by A
on both sides since hl = Ih = 0. The ring Ay/J is commutative, so

0= f(z+h)— f(z)=f'(z)h mod J.

As f" € R[t]/(f) is a unit, f'(z) is invertible in Ag/J, so h = 0 mod J. Thus
h € [z, Ag], as desired. O

Applying Hensel’s lemma to idempotents allows us to lift projective modules
from characteristic p to characteristic 0.

COROLLARY 3.3.1.2. Let P be a finitely generated projective kG-module. Then
there is a projective RG-module P such that P/mP = P, unique up to an isomor-
phism congruent to 1 modulo m.

PRrROOF. Let F' be a finitely generated free kG-module containing P as a sum-
mand. Then there exists e € Endgg(F) such that e = e and P = eF. Note that
Endie(kG) = kG°P by right multiplication so Endgg(F) is a matrix algebra over
(kG)°P.

Now let I be a lift of F; then A = Endgr(F) is a matrix algebra over RG and
so is complete with respect to I = mA. Let f(z) = 2% — x; then f/(z) = 22 — 1 is
coprime to f since

(22 —1)? —4(2? — 2) = 42® —da + 1 — 42? + 4o = 1.

Thus there is € € Enng(F) lifting e such that é2 = &, unique up to conjuga-
tion. P = éF'is our lift. Uniqueness up to conjugation implies uniqueness up to
isomorphism: if P’ is another lift, then P’ can also be made a summand of F. [

After tensoring with K = Frac(R), we can lift a f.g. projective kG-module to
a KG-module.

DEFINITION 3.3.1.3. Define e : K°(kG) — K°(KG) by sending [P] to [P@r K].
THEOREM 3.3.1.4 (cde triangle). The following triangle commutes:
KO(kG) £ Ko(kG)

K°(KG) = Ko(KG)

i.e. ¢ = de.

PRrROOF. Suppose that P is a f.g. projective kG-module, a summand of F =
(kG)™. Let P be a lift which is a summand of F = (RG)". Then e[P] = [P ®r K].
But P ®p K has a lattice P, and P/mP > P by definition. Thus the triangle
commutes. (]



66 3. MODULAR REPRESENTATIONS

3.3.2. Brauer characters.

DEFINITION 3.3.2.1. Let G be a finite group and p be a prime number. g € G
is p-regular if the order of g is prime to p. g € G is p-unipotent if the order of g is
a power of p.

PROPOSITION 3.3.2.2 (Jordan decomposition). If G is a finite group and p is a
prime number, then every g € G can be written in a unique way as g = grg,, where
Gr, Gu are p-reqular and p-unipotent and .Gy = Gugr-

PROOF. Decompose the order of g as mp® where p f m, and write 1 = sp®+tm.
Then g, = ¢°”" and g, = g'™ is one such decomposition. If g = glg/, is another
decomposition, then ¢™ = (g.)™(g,,)™ has order a power of p, so (g,.)"™ = 1 and

g, = gu; thus ¢l = g, O

It turns out that ordinary characters only see the p-regular part of a group
element.

LEMMA 3.3.2.3. If V is a finite-dimensional kG-module, then
tr(g|V) = tr(ge|V).

PROOF. We may assume G = (g). Decompose V = @C V(¢) into eigenspaces
for g,. Since g, commutes with g,., g, acts on each V(¢), and

tr(glV) = ¢tr(gulV(C)).
¢

Thus it suffices to show tr(g.|V(¢)) = dimV(¢). Since g?° = 1 for some e, the
possible minimal polynomials of Jordan blocks are (g, — 1)* for & < p° (i.e. gy
is unipotent). Hence the only eigenvalue of g, is 1, so the trace of g, equals the
dimension. [l

THEOREM 3.3.2.4 (Brauer). The number of simple kG-modules up to isomor-
phism is equal to the number of p-reqular conjugacy classes.

To prove Brauer’s theorem, we need to enhance ordinary characters.

DEFINITION 3.3.2.5. Let V be a finite-dimensional k-vector space, and let 1%4
be a free R-module such that V ® g k 2 V. Suppose g € Endg (V) has finite order
prime to p. The Brauer trace of g is defined to be

trp,(g|V) =tr(§|V) € RC K,

where § € Endg(V) is any lift of g with the same order.

Since the polynomial f(t) = ¢t" — 1 is separable when p { n, Lemma [3.3.1.1
applies to show that g € Endg (V') has a lift which is unique up to conjugation.

REMARK 3.3.2.6. Brauer’s original definition of trg,.(g|V) was to diagonalize
g, then lift the eigenvalues to R. In fact, he took an isomorphism of the roots of
unity prime to p in k with those in C, and viewed the Brauer trace as a complex
number. I think the Brauer trace is more naturally a p-adic number.

Let G4 denote the set of p-regular elements of G, and let Cl(G,c4, A) denote
the A-valued class functions on Gyeg4.
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DEFINITION 3.3.2.7. The Brauer character of a kG-module V is defined on
p-regular g € Greqg
ov(g) = trp.(g|V).
We have ¢y € Cl(Greg, K).

Ifo—-V —V = V” = 0is a short exact sequence of kG-modules, then
oy = ¢y + Py, as trace is additive in short exact sequences. Thus we have a map
¢ : Ko(kG) = Cl(Greg, K). What we are actually going to show is that ¢ induces
an isomorphism

o Ko(k‘G) Rz K — Cl(GTeg,K).
In other words, the Brauer characters of simples form a basis for the class functions
on Greg.

REMARK 3.3.2.8. If V € Ko(KG), then ¢qv = xv|g,.,. In other words, the
Brauer character of a reduction modulo p is just the ordinary character restricted
t0 Greg-

ProrosIiTION 3.3.2.9. If P is a projective RG-module and g € G is not p-
regular, then tr(g|P) = 0.

ProoOF. For g € G, write g = ¢,g, for the Jordan decomposition; since g is
not p-regular, g, # 1. Let C' = (g) be the cyclic subgroup generated by g. Then
Resg P is a projective RC-module. We can decompose P into eigenspaces P for

gr:
P=Fr.
¢

Each P, being a summand of P, is a projective C-module and thus a projective
Cy = {(gu)-module. Now kC, = k[g.]/(g2" — 1), so its only projective module is
free by Jordan decomposition. If @ is a projective RCy-module, then Q/mQ is
free, which in turn implies that @ is free since lifts of projectives are unique up to
isomorphism (Corollary. Thus F is a free RC,-module for all (. The trace
of g, on the regular representation is zero as long as g, # 1. Then

tr(g|P) = ZCtr gulPe) = ZCO =0. O
¢

3.4. (Dec 05) Proof of Brauer’s theorem. Blocks
3.4.1. Proof of Brauer’s theorem.

THEOREM 3.4.1.1. Let P be a projective kG-module and V a kG-module.
i dimy, P9 = ¢, decmg or(9)-
ii. dimy, Hompa (P, V) = 167 X geq,., 9p(97")ov(9)-

PROOF. Let P be a lift of P to a projective RG-module. Then by Proposition
B3.2.9,
¢P g g e Gr
xp(0) = { 9 9€ Cren

0 9g¢ Greg
By Theorem [[.3.1.5] part i,
dimy(P 0 K)© = o7 R @ > ol

geG QGqu
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Now how are (P ®p K)¢ and PY related? For a free RG-module F, F¢ is a
free R-module, and (F @ K)¢ = F¢ @p K and (F/mF)¢ = F¢/mF%. Thus
dimg (F/mF)¢ = dimg(F ®r K)¢. Both of (F/mF)% and F¢/mFY are additive
in direct sums, and similarly for — ®z K, so we conclude for a general projective
P that
dimy,(P/mP)% = dimg (P ®p K)°.

Now consider Homg (P, V') as a kG-module. If P is a summand of a free module
F, then Homy (P, V) is a summand of Homy (F, V). Now Homy (kG,V) 2 VRikG is
a free kG-module, so Homy (P, V) is a projective kG-module. The Brauer character
of Homy (P, V) is g — ¢p(g~ )¢y (g). Thus applying i. to Homy (P, V) gives ii. O

LEMMA 3.4.1.2. Let K be a field of characteristic zero and G be a finite group.
Then there is a finite extension K'/K such that the characters of K'G-modules
span Cl(G, K').

PROOF. Fix an algebraic closure K of K, and let K’ be the extension of K by
all character values of simple K G-modules. Then K’ is a finite extension, and if x
is a simple K G-character, then

ex = )TSR > xlgHg e K'G.

geG
Now e, K'G is a K'G-module, and its base change to K is End(Vy), so its char-
acter is x(1)x. Now {x(1)x}y spans CI(G, K) and is defined over K’, so it spans
CIl(G,K"). O

REMARK 3.4.1.3. In fact, Brauer proved that all of the simple K G-modules are
defined over K ({) where ¢ is a primitive |G|th root of unity [Ser78, §12.3].

THEOREM 3.4.1.4. Let k be an algebraically closed field of characteristic p and
(R,m, k, K) be a p-modular system with residue field k. Then the Brauer character
map ¢ : Ko(kG) @z K — Cl(Greq, K) is an isomorphism.

PROOF. First, we show the map ¢ is injective. Let Lq,...,L, be the iso-
morphism classes of simple modules; we need to show {¢r,,...,¢r, } is linearly
independent. Let the projective covers of the simples be Py,..., P,. Then

1 i=yj
dimy Homga(P;, L) = .
k kG( 7 j) {0 i 7& ]
By Theorem [3.4.1.1}

dimg Homea (P Ly) = = 3 6p(g)or, (9)
|G|
9E€Greg

Thus, if Zj cj¢r; = 0, then taking the product with ¢p, shows ¢; = 0 for all 7.

Now we show ¢ is surjective. It suffices to prove that ¢ @ x K’ is surjective for
some finite extension K'/K. By Lemma there is a finite extension K'/K
so that the characters of ordinary K’'G-modules span CI(G, K'). The p-modular
system (R, m,k, K) has an extension to a p-modular system (R',m’ k, K') with
the same residue field, as k is algebraically closed. So suppose f € Cl(Greq, K').
Then there is V € Ko(K'G) ®z K’ such that xy agrees with f on G,ey. Then
dV € Ko(kG) ®z K’ has

bav = xvlc,., = -



3.4. (DEC 05) PROOF OF BRAUER’S THEOREM. BLOCKS 69

Thus ¢ is surjective. O

COROLLARY 3.4.1.5. If k is an algebraically closed field, then the number of
simple kG-modules is equal to the number of p-reqular conjugacy classes.

REMARK 3.4.1.6. The proof also shows that if p { |G|, then the decomposition
map d : Ko(KG) — Ky(kG) is an isomorphism for sufficiently large K and k. Thus
the representation theory “is the same.”

3.4.2. Examples of Brauer tables and decomposition matrices. The
following is quite useful even for the basic examples.

LEMMA 3.4.2.1 (|Ser78),§16.4). Let L be a simple KG-module defined over K.
Suppose dim L is divisible by the highest power of p divising |G|. Then:
i. if L1 C L is a G-stable lattice, then Ly is a simple projective RG-module;
it. Li/mLy is a simple projective kG-module.

EXAMPLE 3.4.2.2. Let G = X3. The ordinary character table is:
‘ 1 (12) (123)
Xtr 1 1 1
Xat |1 -1 1
Xstd | 2 0 -1.
We are only concerned with the primes 2 and 3. The 2-regular classes are 1 and
(123), while the 3-regular classes are 1 and (12).
At p = 2, Lemma [3.4.2.1] implies ygq restricts to a simple Brauer characte
p=2|1 (123)
¢sta- Thus the table is: ¢y, |1 1 Note that Yu: = X# mod 2. The

¢std 2 -1
- . . 1 110
decomposition matrix at p = 2 is thus Dy = < 0 01 >
At p = 3, the two one-dimensional characters restrict to all the simples.
p=3]1 (12
Gy |1 1 Note dxstq = ¢tr + Gaiz- The decomposition matrix at p = 3
(balt 1 -1

. 1 0 1
1SD3(O 1 1).

EXAMPLE 3.4.2.3. Let G = ¥4. The ordinary character table is:

1 (12) (123) (12)(34) (1234)
N [1 1 1 1 1
3,1 |3 1 0 -1 -1
22 [2 0o -1 2 0
2,1,1) [3 -1 0 -1 1
L1y 1 1 1 -1

At p = 2, the only 2-regular classes are 1 and (123). There is only one simple
Brauer character of dimension 1, the trivial character. The reduction of x(2 2y is
not the sum of two 1d characters since it is not 2¢(4). Thus dx(2,2) is a simple
Brauer character. The Brauer table at p = 2 is

p=2 ‘ 1 (123)
dX(4) 1 1
dX(2,2) 2 -1
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The decomposition matrix at p = 2 is

110 1 1
Da = (o 111 0) '
At p = 3, Lemmal|3.4.2.1|says that the restrictions of x for A # (2,2) are all simple

Brauer characters. The only nontrivial decomposition is dx (2,2) = dxa)+dx(1,1,1,1)-
The decomposition matrix is

1 0 1]l0]0
0 1 1]/0]0
Ds=|0 0l1]0
0 0 0|01

where we ordered the ordinary simples in the order (4), (1,1, 1,1),(2,2),(3,1),(2,1,1).
3.4.3. Blocks.

DEFINITION 3.4.3.1. Two simple Brauer characters ¢, ¢’ are linked if there is
an ordinary y where both ¢ and ¢" appear in dy. Let the blocks Bl(G) of G be the
set of equivalence classes of simple Brauer characters under the relation generated
by ¢ ~ ¢’ if ¢ and ¢’ are linked.

The blocks are exactly the blocks of rows if we attempt to minimally write the
decomposition matrix in block diagonal form.

3.5. (Dec 10) End Times

3.5.1. Finishing the CDE triangle. Note that if A is a finite-dimensional
k-algebra, then there is a pairing
K°(A) x Ko(A) = Z
which sends P,V +— dimy Hom 4 (P, V). Since P is projective, this is bilinear in short
exact sequences (3.1.2.1{iv). Denote this pairing by ([P], [V]) = dimy Homu4 (P, V).
Lemma implies that the classes of simples and projective covers of simples
form dual bases under this pairing.

LEMMA 3.5.1.1. Let x € Ko(KG) and y € K°(kG). Then
(ey,x) = (y, dx).

PROOF. Assume z = [P] and y = [V]. Let V be the reduction of a G-stable
lattice in V' and P be a lift of P to RG. By Theorem |3.4.1.1}

dimy, Homyg (P, V) = |761¥| Z op(9 "oy (9)
gEGreg

= |71;| > xslgxv(9)
geG

= dimg Homg (P, V),
as desired. 0

Express the Cartan, decomposition, and lifting homomorphisms ¢, d, e as ma-
trices C, D, E in terms of the bases of simples and indecomposable projectives.

Theorem |3.3.1.4) says C = DE. Lemma|3.5.1.1|says D = ET (here we use that the

simples and projectives are dual bases to say that the matrix of the adjoint is the



3.5. (DEC 10) END TIMES 71

transpose of the matrix). Thus C' = DDT. Thus, full knowledge of the Brauer and
ordinary character tables lets you compute the Cartan matrix.

3.5.2. Blocks.

DEFINITION 3.5.2.1. Two simple Brauer characters ¢, ¢’ are linked if there is
an ordinary y where both ¢ and ¢" appear in dy. Let the blocks Bl(G) of G be the
set of equivalence classes of simple Brauer characters under the relation generated
by ¢ ~ ¢’ if ¢ and ¢’ are linked.

By definition, the decomposition matrix is block diagonal with blocks indexed
by... blocks. Say that an ordinary character x belongs to a block if the constituents
of dx belong to that block. Note also that ¢ and ¢’ are linked if and only if Cygy # 0.

EXAMPLE 3.5.2.2. [Ser78, §16.4] If V is a simple K G-module with dim V' divis-
ible by the highest power of p dividing |G|, then V reduces to a simple projective
kG-module. This is when a block has a single element.

DEFINITION 3.5.2.3. If x is an ordinary character of G, the associated central
character is the function w taking a conjugacy class to

() = |01

x(1)
LEMMA 3.5.2.4. For any complex character x, the associated character w, is
an algebraic integer.

PRrROOF. Let z = decg € CG; then z is finite over ZG. Hence its action on
a CG-module is by an algebraic integer. By definition tr(z; V,) = |C|x(C), but
[CIx(©) 0
x(1)
PROPOSITION 3.5.2.5. Let (R, m,k, K) be a p-modular system. Two absolutely
simple ordinary characters x,x’ of KG are in the same block if and only if

acts a scalar on V), so z is acting by

Wy =wy mod m.

PROPOSITION 3.5.2.6. Let (R,m,k,K) be a p-modular system. For simple
Brauer characters ¢, ¢’ of G, the following are equivalent:

i. ¢ and ¢’ are in the same block
it. ¢ and ¢’ are in the same block of the Cartan matriz C;
9. EXt*(L¢, L¢/) # 0,’
w. when A = kG is broken into indecomposable two-sided ideals A = Ae; @
- @ Aey, there is an i such that e;Ly # 0 # e;Lgr.

Proofs omitted. Let us point out that this means the blocks are intrinsic to
characteristic p, even though they can be computed entirely using characteristic
zero. This is all part of the fun :)

3.5.3. The symmetric group. How are the simple X, -representations in-
dexed over a field of positive characteristic?

DEFINITION 3.5.3.1. Let p be a prime. A partition A\ - n is p-regular if it does
not have p parts of equal size.

LEMMA 3.5.3.2. The number of p-regular partitions is equal to the number of
p-regular conjugacy classes of %.,.
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PrOOF. A class o € 3, is p-regular if all cycle lengths are prime to p. Thus
the generating function for the number of p-regular classes is

Fl(t):Hliti.

pfi

Now the generating function for the number of p-regular partitions is

O |

L1t
But now
I R
-t 1—ti 1—¢pi
SOF1:F2. O

Brauer’s theorem tells us the p-regular partitions are a viable candidate for
indexing the simple ¥,,-modules. It turns out they do index a natural construction:
For A n, let My = Indgi k. Define the Specht module

S* = Npinty o, us ker(f)

and

SAM = > im(f).

FiMy,— My, u>A

LEMMA 3.5.3.3. If k is of characteristic zero, then My = S*@ S . If k has
characteristic p,
i. D = 8*/(S* N SM) s zero or simple.
i. D> is nonzero if and only if X is p-reqular.
143. {D’\}Ap_regular 18 a list of all isomorphism classes of simple X, -modules.

EXAMPLE 3.5.3.4. When A = (n — 1,1), the Specht module S* is {z € k" |
>, zi = 0}, and if p | n, then S N S* is spanned by (1,1,...,1).

QUESTION 3.5.3.5 (Open). What is a formula for the character of D*? What
is a formula for the decomposition matrix of ,,7

There is a nice algorithm to decide whether two representations of >, are in
the same block.

DEFINITION 3.5.3.6. AF n is a p-core if A has no p-rim hooks.

PROPOSITION 3.5.3.7 ([JK81], 2.7.16). For each partition A, there is a unique

p-core partition X such that removing p-rim hooks from A until no p-rim hooks are
left yields M.

THEOREM 3.5.3.8 (Nakayam:j’s conjecture). Two A, u F n correspond to the
same block of kX, if and only if A = [i.
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3.5.4. Affine g[p controls the modular representation theory of the
symmetric groups. Recall that sl,, is generated by the elements E; = E; 41,
Fi = EiJrl_j for 1 S 1 < n. If we set HZ = [E“Fz] = Ei,i - Ei+1,i+17 then these
satisfy the relations

(B, Fj] = 6ijHi,  [Hy, Ej] = ¢ B [Hi, Fj] = —ci; F}
(adE;)' =% Ej = 0, (adF;)' =% (Fj) = 0

where
2 -1 0 0

is the Cartan matrix of sl,,.

DEFINITION 3.5.4.1. The Kac-Moody algebra sfp has generators E; : 1 <i<p
and the relations above with the Cartan matrix
2 i=j modp
Cij={—-1 i=j+1 modp.
0 else
Recall the Young-Jucys-Murphy elements X; = 23;11 (ji) € Z%,;. The same
proof as over C shows that the possible eigenvalues of X; in a representation of ¥;
are integers in the interval [—i,4]. When k is of characteristic p, this means X; has
eigenvalues in F,,.

DEFINITION 3.5.4.2. Define
FE; . kX, —mod — k¥,,_1—mod
by sending V' to the generalized eigenspace Vi for X,, at i € F,,.

Since X,, commutes with X,,_1, we see V[i] has an action of ¥,,_1, and
@ E;, = Res%::il .
i€k,
By abstract nonsense, this implies that
Sn ‘
ndi" =P F
ieF,

where F; : k¥, —mod — kX, 11 —mod is a biadjoint functor to E;.
These induce linear transformations on

R = (é K(k%,))®C.

The functors E; and F; induce linear transformations F; : R — R and F; : R — R.

THEOREM 3.5.4.3 (Grojnowski [Gro99]). The functors E;, F; generate an action
of sl,(C) on R.
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Furthermore, the representation R of 5/[; is explicitly described: it is the basic
representation generated by the highest weight vector [1] € K(kX;). For more on
this, see the survey article [BK03] and the original paper of Grojnowski |[Gro99).

This is one entry into the story of categorification: can you make K of one
category into a representation of something else? In this case, [ [,, Rep(X,) becomes

a categorical representation of sl,.

3.5.5. Outlook. In modular representation theory of GL,, (semisimple alge-
braic groups), the representations Vy = H°(G/B_,O()\)) are no longer simple.
These play a similar role to characteristic zero representations in the modular the-
ory for finite groups: in between the projectives and simples there is an easier class
of “standard” modules.

DEFINITION 3.5.5.1. Ly C H%(G/B_,O(\)) is the simple subrepresentation
generated by a highest weight vector.

EXAMPLE 3.5.5.2. For GL, acting on k[z, y],, 2P generates a simple subrepre-
sentation k{z?,y”} of dimension 2.

The numbers [L, : V)] are analogous to the decomposition numbers. Define
Ay =V, to be the Weyl module

CONJECTURE 3.5.5.3 (Lusztig). Under certain assumptions on p and A, [L,] =
+Py . (1)[A\] where Py, are the Kazhdan-Lusztig polynomials.
A yo vy

The Kazhdan-Lusztig polynomials are certain polynomials defined by the geom-
etry of the complex flag variety G/B. They also govern similar questions about the
infinite-dimensional complex representation theory and the representation theory
of quantum groups.

The Lusztig conjecture has since been established for very large p. See [CW21]
for a discussion of this area.
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