A PROOF OF AN IDENTITY OF HOCHSCHILD

JOSHUA MUNDINGER

Lemma. Let A be a commutative algebra over \mathbb{F}_p , $D \in Der(A)$, $f \in A$. Then $D^{p-1}(f^{p-1}Df) = f^{p-1}D^p(f) - D(f)^p$.

Proof. It suffices to prove the lemma for the polynomial ring $A = \mathbb{F}_p[x_0, x_1, \ldots]$ in countably many variables with $f = x_0$ and $\overline{D} \in Der(A)$ the derivation defined by $\overline{D}(x_i) = x_{i+1}$ for all $i \ge 0$.

Now let $B = \mathbb{Z}/p^2\mathbb{Z}[x_0, x_1, \ldots]$ and let D denote the derivation defined by $D(x_i) = x_{i+1}$ for all $i \ge 0$. We have B/pB = A, and $D \equiv \overline{D} \mod p$. Lifting to B allows us to obtain the left-hand side of the desired identity in the following way:

(1)
$$D^{p}(f^{p}) = D^{p-1}(D(f^{p})) = pD^{p-1}(f^{p-1}Df).$$

Now applying the Leibniz rule p times to $D^{p}(f^{p})$, we obtain

$$\mathsf{D}^{\mathfrak{p}}(\mathfrak{f}^{\mathfrak{p}}) = \sum_{\mathfrak{i}_{1}+\cdots+\mathfrak{i}_{\mathfrak{p}}=\mathfrak{p}} \frac{\mathfrak{p}!}{\mathfrak{i}_{1}!\cdots\mathfrak{i}_{\mathfrak{p}}!} \mathsf{D}^{\mathfrak{i}_{1}}(\mathfrak{f})\cdots\mathsf{D}^{\mathfrak{i}_{\mathfrak{p}}}(\mathfrak{f}).$$

Given (i_1, \ldots, i_p) , let r_i be the number of $j \in \{1, \ldots, p\}$ with $i_j = i$. Since the derivatives of f commute, the term

$$\frac{p!}{i_1!\cdots i_p!}D^{i_1}(f)\cdots D^{i_p}(f)$$

appears $p!/(r_1!\cdots r_p!)$ times in the above sum. Hence, all terms in the sum disappear except for two cases: those where $i_j = p$ for some j, corresponding to the term $f^{p-1}D^p(f)$ which appears p times; or those all i_j are equal, corresponding to the term $p!D(f)^p$, appearing once. Thus,

(2)
$$D^{p}(f^{p}) = pf^{p-1}D^{p}(f) + p!D(f)^{p}.$$

Equating (1) and (2), then dividing by p, gives the desired formula.

Remark. This identity appeared in the Seminaire Claude Chevalley in 1958, in a talk by Seshadri on Cartier operators [4, Lemma 2], where it is attributed to Hochschild. This was in the same year as Cartier's paper [2, p. 203, (42)], where the identity appears in connection with logarithmic differential forms. Cartier cites [1, p. 59] for proof of this identity. The proof by Barsotti uses a similar technique as above, but is more complicated. That proof also appears in a Stack Exchange post [3].

References

- [1] Iacopo Barsotti. Repartitions on abelian varieties. Illinois Journal of Mathematics, 2(1):43-70, 1958.
- [2] Pierre Cartier. Questions de rationalité des diviseurs en géométrie algébrique. Bulletin de la Société Mathématique de France, 86:177–251, 1958.
- Ben (https://math.stackexchange.com/users/164207/ben). Conceptual explanation for the identity of Hochschild about derivations. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/3038006 (version: 2018-12-13).
- [4] Conjeerveram Srirangachari Seshadri. L'opération de Cartier. Applications. Séminaire Claude Chevalley, 4:1–26, 1958.

Date: February 15, 2020.