Introduction to \mathcal{D} -modules II

Joshua Mundinger

October 29, 2019

Abstract

These are notes for the Beillinson-Bernstein localization seminar, Fall 2019. This is the second of two talks in a series on \mathcal{D} -modules. This talk covers pullback and pushforward, Kashiwara's Lemma, singular support, and that \mathbb{P}^n is a \mathcal{D} -affine variety.

1 Global differential operators

1.1 Global operators on \mathbb{P}^1

Let's compute $\Gamma(\mathcal{D}_{\mathbb{P}^1})$. We have the standard two affine coordinate charts $U_0 = \mathbb{P}^1 \setminus \infty$, $U_1 = \mathbb{P}^1 \setminus 0$, with coordinates z and z^{-1} . We need to compute the relation between the derivations ∂_z and $\partial_{z^{-1}}$ in $U_0 \cap U_1$. By the Leibniz rule,

$$\partial_{z^{-1}}(z) = -z^2$$

and thus $\partial_{z^{-1}}|_{U_0\cap U_1}=-z^2\partial_z|_{U_0\cap U_1}$. This calculation reflects that $\mathcal{T}_{\mathbb{P}^1}\cong\mathcal{O}(2)$. We also conclude that the global vector fields are

$$\Gamma(\mathbb{P}^1, \mathcal{T}_{\mathbb{P}^1}) = \operatorname{span}_{\mathbb{C}} \{\partial_z, z \partial_z, z^2 \partial_z\}.$$

This follows since a section over U_0 , of the form

$$(c_0 + c_1 z + \dots + c_n z^n) \partial_z = (c_0 + (z^{-1})^{-1} + \dots + c_n (z^{-1})^{-n}) (-(z^{-1})^2 \partial_{z^{-1}}),$$

extends over ∞ if and only if $c_k = 0$ for k > 2.

What is the Lie algebra structure of $\Gamma(\mathbb{P}^1, \mathcal{T}_{\mathbb{P}^1})$ under the bracket? If we set $E = -\partial_z$, $H = -2z\partial_z$, $F = z^2\partial_z$ (as in [3, p.22, (9)]), then we can compute

$$[H,E] = [-2z\partial_z, -\partial_z] = -2\partial_z = 2E$$

and similarly [H, F] = -2F, [E, F] = H. So, the Lie algebra is \mathfrak{sl}_2 . This is no accident: \mathbb{P}^1 is the flag variety of \mathfrak{sl}_2 . This induces a map $\varphi : \mathcal{U}\mathfrak{sl}_2 \to \Gamma(\mathcal{D}_{\mathbb{P}^1})$.

Let $\Omega = \frac{1}{2}H^2 + H + 2FE$ be the Casimir element.

Theorem 1.1. The map $\varphi : \mathcal{U}\mathfrak{sl}_2/(\Omega) \to \Gamma(\mathcal{D}_{\mathbb{P}^1})$ is an isomorphism.

Proof. First, we check the map is well-defined. The Casimir element $\Omega = \frac{1}{2}H^2 + H + 2FE$ maps to zero:

$$\varphi(\frac{1}{2}H^2) = 2z\partial_z z\partial_z = 2z^2\partial_z^2 + 2z\partial_z = \varphi(-2FE - H).$$

For $F_i\mathcal{D}_{\mathbb{P}^1}$ the usual degree filtration on $\mathcal{D}_{\mathbb{P}^1}$, we have

$$0 \to F_{i-1}\mathcal{D}_{\mathbb{P}^1} \to F_i\mathcal{D}_{\mathbb{P}^1} \to \operatorname{Sym}^i \mathcal{T}_{\mathbb{P}^1} \cong \mathcal{O}(2i) \to 0. \tag{1}$$

This is because tensor powers and symmetric powers coincide for line bundles. Since the products of global vector fields surject onto $\operatorname{Sym}^i \mathcal{T}_{\mathbb{P}^1}$, we conclude that $\Gamma \mathcal{D}_{\mathbb{P}^1}$ is generated in degree one. Hence, φ is surjective.

To prove injectivity, we do a dimension count. On the left-hand side, we have the image of the PBW filtration; on the right-hand side, we have the degree filtration. The map φ preserves the filtration, so we may pass to associated graded.

Now $\operatorname{gr}^{i} \mathcal{U}\mathfrak{sl}_{2} \cong \operatorname{Sym}^{i} \mathfrak{sl}_{2} = \binom{i+2}{2}$, and as the ideal generated by the Casimir Ω is degree 2, we get $\dim F_{i}\mathcal{U}\mathfrak{sl}_{2}/(\Omega) = \dim \operatorname{gr}^{i}\mathcal{U}\mathfrak{sl}_{2} + \dim \operatorname{gr}^{i-1}\mathcal{U}\mathfrak{sl}_{2}$. Hence,

$$\dim \operatorname{gr}^i \operatorname{\mathcal{U}\mathfrak{sl}}_2/(\Omega) = \dim \operatorname{gr}^i \operatorname{\mathcal{U}\mathfrak{sl}}_2 - \dim \operatorname{gr}^{i-2} \operatorname{\mathcal{U}\mathfrak{sl}}_2 = \binom{i+2}{2} - \binom{i}{2} = 2i+1.$$

Now we count dimensions on the other side. Taking cohomology of our short exact sequence in (1) gives

$$0 \to \Gamma(F_{i-1}\mathcal{D}_{\mathbb{P}^1}) \to \Gamma(F_i\mathcal{D}_{\mathbb{P}^1}) \to \Gamma(\mathcal{O}(2i))$$

 $\to H^1(F_{i-1}\mathcal{D}_{\mathbb{P}^1}) \to H^1(F_i\mathcal{D}_{\mathbb{P}^1}) \to H^1(\mathcal{O}(2i)) \to 0.$

Now $H^1(\mathcal{O}(2i)) = 0$ for $i \geq 0$ and $H^1(F_0) = H^1(\mathcal{O}) = 0$, so we get $H^1(F_i) = 0$ for all $i \geq 0$, and

$$0 \to \Gamma F_{i-1} \to \Gamma F_i \to \Gamma \mathcal{O}(2i) \to 0.$$

In particular, the dimension of $\Gamma F_i/\Gamma F_{i-1}$ is 2i+1. So $\operatorname{gr}^i \varphi$ is a surjective map between vector spaces of dimension 2i+1.

This theorem is the first case of the Beillinson-Bernstein correspondence. The theorem has two parts: it describes the global differential operators on the flag variety, and it states \mathcal{D} -modules are the same as modules over global differential operators.

Remark 1.2. Describing these global sections in coordinates is complicated: for instance

$$(z^2 \partial_z)^2 = z^4 \partial_z^2 - 2z^3 \partial_z,$$

but neither of the latter are global differential operators. In particular, the formula at the bottom of p. 22 in [3] is incorrect.

1.2 \mathcal{D} -affine varieties

What is the difference between $\Gamma(\mathcal{D}_{\mathbb{P}^1})$ and $\mathcal{D}_{\mathbb{P}^1}$? For a smooth variety X over \mathbb{C} , we have an adjunction

$$\operatorname{Loc}: \Gamma(\mathcal{D}_X)\operatorname{-mod} \rightleftarrows \mathcal{D}_X\operatorname{-mod}: \Gamma$$

where Loc $\mathcal{D}_X \otimes_{\Gamma(\mathcal{D}_X)} -$.

Definition 1.3. The variety X is \mathcal{D} -affine if the functors Γ and Locare equivalences.

Proposition 1.4 (Abstract nonsense, [2] Proposition 1.4.4). X is \mathcal{D} affine if and only if $\Gamma : \mathcal{D}_X \operatorname{-mod} \to \Gamma(\mathcal{D}_X) \operatorname{-mod}$ is exact and $\Gamma(\mathcal{M}) = 0$ implies $\mathcal{M} = 0$.

The last condition is equivalent to \mathcal{D}_X -modules being globally generated. For a variety X, Serre's criterion states

$$\Gamma: Qcoh(X) \to \Gamma(\mathcal{O}_X)$$
-mod

is an equivalence if and only if X is affine [1, Theorem III.3.7]. As the global sections functor coincides with global sections on Qcoh(X), we conclude that if X is affine, then X is \mathcal{D} -affine. However, there are more \mathcal{D} -affine varieties. The goal of the rest of the talk is to prove:

Theorem 1.5. \mathbb{P}^n is a \mathcal{D} -affine variety.

Remark 1.6. \mathbb{P}^n is a partial flag variety, as SL_{n+1} acts on it with parabolic stabilizer $GL_n \rtimes \mathbb{G}_a^n$.

2 Pullback and pushforward

To prove more about \mathcal{D}_X -modules, we need more technology.

Definition 2.1. Let $\phi: X \to Y$ be a smooth morphism over S. Then for \mathcal{M} a left \mathcal{D}_Y -module, the pullback $\phi^*\mathcal{M}$ is given by the usual pullback of \mathcal{O} -modules:

$$\phi^*\mathcal{M} = \mathcal{O}_X \otimes_{\phi^{-1}\mathcal{O}_Y} \phi^{-1}\mathcal{M}$$

as an \mathcal{O}_X -module. The action of \mathcal{D}_X defined by the derivative of ϕ :

$$T\phi: T_X \to \phi^* T_Y$$

and $\xi \in T_X$ acts by the Leibniz rule on $\mathcal{O}_X \otimes \phi^{-1} \mathcal{M}$:

$$\xi(f \otimes m) = \xi(f) \otimes m + fT\phi(\xi)(m).$$

Pushforwards are more complicated. Following [3], observe that $\phi^{-1}\mathcal{M}$ is a $\phi^{-1}\mathcal{D}_Y$ -module, so if we set $\mathcal{D}_{X\to Y}=\mathcal{O}_X\otimes_{\phi_{-1}\mathcal{O}_Y}\phi^{-1}\mathcal{D}_Y$, then $\mathcal{D}_{X\to Y}$ is a $(\mathcal{D}_X,\phi^{-1}\mathcal{D}_Y)$ -bimodule, which is exactly the gadget we need to turn a left $\phi^{-1}\mathcal{D}_Y$ -module into a left \mathcal{D}_X -module.

This gadget lets us turn right \mathcal{D}_X -modules into right $\phi^{-1}\mathcal{D}_Y$ -bimodules, so for \mathcal{P} a right \mathcal{D}_X -module, we can define the pushforward

$$\int_{\phi}^{0} \mathcal{P} = \phi.(\mathcal{P} \otimes_{\mathcal{D}_{X}} \mathcal{D}_{X \to Y})$$

To define the pushforward for left \mathcal{D} -modules, we have to use side-changing: $\mathcal{D}_{Y \leftarrow X}$ is a $(\phi^{-1}\mathcal{D}_Y, \mathcal{D}_X)$ -bimodule obtained from $\mathcal{D}_{X \to Y}$.

Definition 2.2. For \mathcal{M} a left \mathcal{D}_X -module and $\phi: X \to Y$, the push-forward is given by

$$\int_{\phi}^{0} \mathcal{M} = \phi.(\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_{X}} \mathcal{M}).$$

The derived pushforward is given by

$$\int_{\phi} \mathcal{M} = R\phi.(\mathcal{D}_{Y \leftarrow X} \otimes^{L}_{\mathcal{D}_{X}} \mathcal{M}),$$

and $\int_{\phi}^{i} \mathcal{M} = H^{i}(\int_{\phi} \mathcal{M}).$

There are issues with this derived definition: how does one compose left and right derived functors? I can't resolve them here. We need that there is a derived pushforward, and consequently we get a long exact sequence in cohomology. See [2, Section 1.5].

Example 2.3. Say $\varphi : \mathbb{A}^k \to \mathbb{A}^n$ is the inclusion of the space $\{x_{k+1} = \dots = x_n = 0\}$ via the standard coordinates x_i . Then $\mathcal{D}_{X \to Y} = \mathbb{C}[x_1, \dots, x_k]\langle \partial_1, \dots, \partial_n \rangle = \mathcal{D}_X \langle \partial_{k+1}, \dots, \partial_n \rangle$, The side-change is

$$\mathcal{D}_{Y \leftarrow X} = \langle \partial_{k+1}, \dots, \partial_n \rangle \mathcal{D}_X.$$

Hence for M a left $\mathcal{D}_{\mathbb{A}^k}$ -module, $\int_{\varphi}^0 M = \langle \partial_{k+1}, \dots, \partial_n \rangle M$. (describe $\mathcal{D}_{\mathbb{A}^n}$ action.)

Example 2.4. Say $U \to Y$ is an open immersion. Then it induces an isomorphism on tangent spaces, so $\mathcal{D}_{X\to Y} = \mathcal{D}_U$. Hence, the pushforward $\int_{\phi}^{0} \mathcal{M}$ coincides with the pushforward as \mathcal{O} -modules.

Let $i: Y \to X$ be a closed subvariety. Kashiwara's Lemma describes the \mathcal{D}_X -modules which are supported as \mathcal{O}_X -modules on Y, written \mathcal{D}_X -mod $_Y$.

Lemma 2.5 (Kashiwara, [2] Theorem 1.6.1). The pushforward \int_i^0 : \mathcal{D}_Y -mod $\to \mathcal{D}_X$ -mod Y is an equivalence of categories.

Example 2.6. If $j: p \to X$ is the inclusion of a point, then a \mathcal{D}_p -module is just a vector space. Let $\{x_i, \partial_i\}$ be local coordinates at x. Then locally at p, $\int_j^0 1 = \mathbb{C}[\partial_1, \dots \partial_n] \delta$ where $x_i \delta = 0$ for all i. This is the *Dirac delta function at* p, as a \mathcal{D} -module.

3 \mathbb{P}^n is \mathcal{D} -affine

 \mathbb{P}^n is a \mathbb{C}^* -quotient; we will use this structure. The Lie algebra of $\mathbb{C}^{\times} = \operatorname{Spec} \mathbb{C}[t, t^{-1}]$ is spanned by $t\partial_t$, as it is left invariant.

Let V be a vector space with coordinate functions $\{x_0, \ldots, x_n\}$ and corresponding vector fields $\{\partial_0, \ldots, \partial_n\}$.

Proposition 3.1. The infinitesimal action $Lie(\mathbb{C}^{\times}) \to \mathcal{T}_V$ of \mathbb{C}^{\times} on V is given by

$$t\partial_t \mapsto \xi = \sum_{i=0}^n x_i \partial_i.$$

The vector field $\xi = \sum_{i=0}^{n} x_i \partial_i$ is known as the *Euler vector field*. If f is a homogeneous polynomial in the variables x_i , then $\xi(f) = (\deg f)f$. The following lemma is essentially a consequence of this:

Lemma 3.2 ([3], Proposition 2.46). Let $\pi: V \setminus 0 \to \mathbb{P}(V)$ denote the projection. If \mathcal{M} is a $\mathcal{D}_{\mathbb{P}(V)}$ -module, then the \mathbb{C}^{\times} grading on $\Gamma(\pi^*\mathcal{M})$ is the eigendecomposition of $\Gamma(\pi^*\mathcal{M})$ with respect to ξ .

Theorem 3.3. $\mathbb{P}(V)$ is \mathcal{D} -affine.

Proof, following [3], Proposition 2.48, or [2], Theorem 1.6.5. First, we prove exactness. Let $\pi: V \setminus 0 \to \mathbb{P}(V)$ be the projection, $j: V \setminus 0 \to V$ the inclusion. The global sections functor on $\mathcal{D}_{\mathbb{P}(V)}$ -mod factors as follows:

$$\begin{array}{ccc} \mathcal{D}_{V \backslash 0}\operatorname{-mod} & \stackrel{\Gamma}{\longrightarrow} & \Gamma(\mathcal{D}_{V \backslash 0})\operatorname{-mod} \\ & & & & \downarrow \ker_{\mathbb{C}^{\times}} = \ker(\xi) \\ \\ \mathcal{D}_{\mathbb{P}(V)}\operatorname{-mod} & \stackrel{\Gamma}{\longrightarrow} & \Gamma(\mathcal{D}_{\mathbb{P}(V)})\operatorname{-mod} \end{array}$$

The pullback π^* is exact since π is smooth. Further, as $\Gamma(\mathcal{D}_{V\setminus 0}) = \Gamma(\mathcal{D}_V)$, and V is affine, the global sections functor coincides with the pushfoward \int_j^0 . So, given $0 \to \mathcal{M}' \to \mathcal{M} \to \mathcal{M}'' \to 0$ a short exact sequence of $\mathcal{D}_{\mathbb{P}(V)}$ -modules, we get a long exact sequence

$$0 \to j_*(\pi^*\mathcal{M}') \to j_*(\pi^*\mathcal{M}) \to j_*(\pi^*\mathcal{M}'') \to \int_j^1 \pi^*\mathcal{M}' \to \cdots$$

Now the pushforward j_* is exact on $V \setminus 0$ (it's an isomorphism there) so as an \mathcal{O} -module, $\int_j^1 \pi^* \mathcal{M}'$ is supported on $\{0\}$. Hence, it is a direct sum of Dirac delta functions. As $\ker(\xi)$ is an exact functor, it suffices to show that the kernel of ξ on $\int_j^1 \pi^* \mathcal{M}'$ is zero. But if δ is a Dirac delta at zero, then letting $\partial^{\alpha} = \partial_0^{\alpha_0} \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$, we compute

$$\left(\sum_{i=0}^{n} x_i \partial_i\right) \partial^{\alpha} \delta = \sum_{i=0}^{n} [x_i, \partial_i \partial^{\alpha}] \delta = \sum_{i=0}^{n} (-1 - \alpha_i) \partial^{\alpha} \delta$$

and thus ξ acts on $\mathbb{C}[\partial_0,\ldots,\partial_n]\delta$ with strictly negative eigenvalues.

Now suppose that $\Gamma(\mathcal{M}) = 0$. Consider the grading on $\Gamma(\pi^*\mathcal{M}) = \bigoplus_d \Gamma(\pi^*\mathcal{M})_d$. If $\mathcal{M} \neq 0$, then there is some d so that $\Gamma(\mathcal{O}(d) \otimes \mathcal{M}) \neq 0$ [1, Theorem III.5.17], so $\Gamma(\pi^*\mathcal{M}) \neq 0$. It suffices to show that $\Gamma(\pi^*\mathcal{M}) = 0$, given $\Gamma(\pi^*\mathcal{M})_0 = 0$. The action of ∂_i lowers the grading by one, and the action of x_i lowers the grading by one. So

 $\xi: \Gamma(\pi^*\mathcal{M})_d \to \Gamma(\pi^*\mathcal{M})_{d-1} \to \Gamma(\pi^*\mathcal{M})_d$. If $\Gamma(\pi^*\mathcal{M})_0 = 0$, then by induction, $\Gamma(\pi^*\mathcal{M})_d = 0$ for $d \ge 0$.

Now $x_i\Gamma(\pi^*\mathcal{M})_{-1}=0$ for all i, so $\Gamma(\pi^*\mathcal{M})_{-1}$ is supported at $\{0\}$. But $\pi^*\mathcal{M}$ is on $V\setminus 0$, so $\Gamma(\pi^*\mathcal{M})_{-1}=0$. Inductively repeating this argument gives $\Gamma(\pi^*\mathcal{M})_d=0$ for d<0.

References

- [1] Robin Hartshorne. Algebraic geometry. Springer, 1977.
- [2] Ryoshi Hotta and Toshiyuki Tanisaki. *D-modules, perverse sheaves, and representation theory*. Springer, 2007.
- [3] Yi Sun. \mathcal{D} -modules and representation theory.