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Abstract

These are notes for an introductory talk on Dx-modules in the
student Beilinson-Bernstein localization seminar, Fall 2019. The main
references for this subject are [IL [2]. This lecture covers the definition
of differential operators, left and right modules, and side-changing.

1 Definition of Dy/g

1.1 Vector fields in algebraic geometry

Here we give an algebraic description of vector fields, suitable for al-
gebraic geometry.

Definition 1.1. Given a morphism of commutative rings with unity
B — A, a derivation of A over B is a map D : A — A which is
B-linear and satisfies the Leibniz rule

D(fg) = fD(g) + D(f)g-
The space of derivations of A over B is denoted Derp(A).

For D : A — A satisfying the Leibniz rule, B-linearity is equivalent
to D(b) =0 for all b € B. Derg(A) is an A-module.

Proposition 1.2. Let X — * be a smooth manifold. A derivation of
C>(X) over R is the same as a vector field on X.

Proof. Vector fields act as derivations on C*°(X). Conversely, if D
is a derivation of C'°°(X), then using partitions of unity, D defines
a derivation on C*°(X) for all U C X: if f € C*(U), p € U, take



¢ € C°(U) which is identically 1 in a neighborhood of p, and define
Df(p) = D(¢f)(p). It is an exercise to show this is well-defined.

Now suppose U C X is a coordinate patch and x : U — R" are
local coordinates. If f € C*°(U) and ¢ € U with x(q) = (t1,...,tn),
we have

f=1f@+ Z(:ci — ) f;

for smooth functions f;, defined possibly in a possibly smaller neigh-
borhood of ¢ [3, Lemma 2.1]. Then for a derivation D of C*°(X),

Df(q) = 32, d(w:)(q) fi(q)- But fi(q) = 5L(q), so
Do) = X dle @) g (@)

As g was arbitrary, we obtain D = ). d(xi)a%i on U. This shows that
D is a vector field on U. Then glue patches. O

In this proof, partitions of unity showed that a derivation of global
functions descended to compatible derivations of local functions. In a
more general geometric context, we will have to use sheaves of deriva-
tions instead.

Let # : X — S be a morphism of ringed spaces. Here are the
two key examples for this talk: first, if X is a smooth manifold, S is a
point, and both are equipped with their rings of smooth real functions;
second, if X — S is a morphism of schemes.

Definition 1.3. The relative tangent sheaf of X/S is the sheaf
T(X/S) = Derp-10,(0x)
of 7~ 'Og-linear derivations Ox — Ox.

Example 1.4. If M — M’ is a submersion of manifolds, then the
relative tangents Tyr/y are given by

0 — Ty = Tayr — Taryr — 0,

which is dual to the Euler exact sequence.



1.2 The ring of differential operators

There are two definitions of the ring of differential operators. In gen-
eral, they are not equal, but they agree in the case of a smooth mor-
phism of schemes in characteristic zero.

Definition 1.5. Dy/g is the sub-sheaf of rings of &nd,-10,(Ox)
locally generated by 7~'0g and Tx/s-

Definition 1.6. Let B — A be a morphism of commutative rings.
The Grothendieck differential operators of order n, written F,D4/p
are exactly the B-linear functions d : A — A satisfying that for all
f E A’

d, f] € Fn1D 4B,
where we view f as acting as multiplication on A, with F.1D 4,5 = 0.

The ring of Grothendieck differential operators of A/Bis Dy p =
UnD 4, B-

Let’s calculate the Grothendieck differential operators of order 0
and 1. The order 0 differential operators are exactly the A-linear
functions A — A, so FopD 4 /p = A.

If d € F1Dy/p then for all f,g € A,

d(fg) = fd(g) + [d, flg.

In particular,taking g = 1 gives

d(f) = fd(1) +[d, f].
The function d is a derivation if and only if d(1) = 0, and d is in Ox

if and only if [d, f] = 0 for all f. This shows 1 D4 p = A® Derg(4),
via the projections d — d(1) and d — d — d(1).

Exercise 1.7. D y/p is an almost commutative filtered ring: we have
for d € F,Dy/p and d' € FuDyp that dod € Fo1mDa/p and
[d,d] € Fuym-1Da/p. Conclude

gtp Dasp = Sn>0FnDa/p/Frn1Dasp
is a commutative A-algebra.

Proposition 1.8. [1, Ezercise 2.1.16] If B contains a field of char-
acteristic zero, B — A is of finite type, and Derg(A) is a locally
free A-module, then gr D 4/p = Sym}y Derg(A), induced by the map
Derg(A) = gr! Dy p-



Now one can define Grothendieck differential operators of X —
S as the sheafification of local Grothendieck differential operators.
The proposition above ensures that locally, Grothendieck differential
operators are generated by vector fields.

Corollary 1.9. If X — S is a smooth morphism of schemes in char-
acteristic zero, our two definitions of differential opeartors agree, and
Dx/g is generated by Tx,s subject to the relations [, f] = £(f) for
£ €Txss, f€0x and &8 — 261 = [&1,&2] for [, —] the bracket on
TX/S and & € TX/S-

That these relations suffice can be checked by passing to associated
graded.

Remark 1.10. The filtration F' corresponds to the PBW filtration on
Dx/s: FnDx s is the span of morphisms whith are products of at most

n vector fields. Then, a PBW theorem may be proven directly, as in
[1, Corollary 2.1.8].

Example 1.11. If X = A7 — S = Speck, (suppressing S from
now on,) then I'(X,Tx/,) = klx1,...,2,]{01,...,0,} with bracket
[05,0;] = 0 for all < and j and 0;(x;) = 0;;. Hence

DX/k = k<x1,.. . ,xn,al,...,6n>

modulo the relations [z;, z;] = [0;,0;] = 0, [0;,z;] = 6;5. This is
known as the Weyl algebra A,,.

2 Dx-modules

From this point, our spaces are smooth varieties over S = Spec C. The
base scheme S will be suppressed from the notation.

Definition 2.1. A Dx-module is a sheaf on X which is a module over
Dx and quasicoherent as an Ox-module (with respect to Ox C Dy).

We have a presentation of Dx, generated by Tx with certain re-
lations. So, to define a Dx-module structure on an Ox-module is
to specify the action of Tx, satisfying certain relations. For a left
Dx-module, these relations coincide with those of a connection.

Proposition 2.2. [2, Lemma 1.2.1] A left Dx-module is the same
as a quasi-coherent Ox-module M equipped with a connection V :
Tx @c M — M satisfying



1. er(m) = [Vgm
2. Vo(fm)= fVgm +0(f)m,
8. [Vo,, Vo] = Vio, 0,

The last condition is that V has zero curvature, and so is sometimes
called flatness; it is also known as integrability.

Example 2.3. The ring of functions Ox with natural action by
derivations of Tx makes it a Dx-module.

2.1 Aside on smooth manifolds

For M a smooth manifold over R, we have bijections

{rank n vector bundles with flat connection}

!

{rank n locally constant sheaves}

!

{n-dimensional representation of 71 (M)}.

The first arrow sends (E, V) to {s | Vs = 0}. The integrability condi-
tion, with the Frobenius integrability theorem, implies that the result
is a rank n locally constant sheaf. The second is standard algebraic
topology: a locally constant sheaf is determined by its monodromy
representation.

This is a version of the Riemann-Hilbert correspondence. A version
also exists in the algebraic category, but I can’t talk about it.

2.2 Right Dx-modules

Proposition 2.4. [2, Lemma 1.2.5] A right Dx-module is the same
as an Ox-module P and a map V' : Tx @c M — M satisfying

1. Vig(m) = Viy(fm),
2. Vy(fm) = fVym+0(f)m,
3. [V, Vp,] = v,[91702}'
The right structure is given by: for a € P and 0 € Tx, af = —Vj(a).

Example 2.5. The canonical bundle wx = /\dimX Qk is a right Dx-
module under Vj, = Lieg.



The philosophy is that left D-modules are functions, and right
D-modules are measures. This will come up when defining the six
functors for Dx-modules.

2.3 Side-changing

The Weyl algebra has an anti-automorphism z; — z;,0; — —0;.
Hence A = A°P, so a left-module may be considered as a right-module
via the above. This works on a general affine variety, but not globally.
Instead, we need a global twist.

The canonical bundle wy,s changes between left and right D-
modules. In local coordinates, for a = fdxy A - - - dxy,

Lieg, fdxyr A -+ Ndxy = (0 f)dzy A -+~ Ndxy
and so in general
a0j = =0 fdxy A --- ANdxy,

suggesting the anti-automorphism of the Weyl algebra we discussed
earlier. See [2, Lemma 1.2.6] for more details.

2.3.1 Hom and tensor

Tensoring two left Dx-modules produces a left module. Tensoring
a left Dx module M and a right Dx-module N’ gives a right Dx-
module, with
(m®n)d =m®nld —0mn.
Also, if M" and N are right Dx-modules, then Homep, (M',N7) is
a left Dx-module with (6¢)(m) = ¢(mb) — 6(¢(m)) [2, Proposition
1.2.9]. Then
wx ® — : Dx-mod «— D¥-mod : Homp, (wx, —)

is an equivalence between left- and right- Dx-modules, since they are
quasi-inverses on the underlying Ox-modules as wx is a line bundle.
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