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Abstract

These are notes for an introductory talk on DX -modules in the
student Beilinson-Bernstein localization seminar, Fall 2019. The main
references for this subject are [1, 2]. This lecture covers the definition
of differential operators, left and right modules, and side-changing.

1 Definition of DX/S

1.1 Vector fields in algebraic geometry

Here we give an algebraic description of vector fields, suitable for al-
gebraic geometry.

Definition 1.1. Given a morphism of commutative rings with unity
B → A, a derivation of A over B is a map D : A → A which is
B-linear and satisfies the Leibniz rule

D(fg) = fD(g) +D(f)g.

The space of derivations of A over B is denoted DerB(A).

For D : A→ A satisfying the Leibniz rule, B-linearity is equivalent
to D(b) = 0 for all b ∈ B. DerB(A) is an A-module.

Proposition 1.2. Let X → ∗ be a smooth manifold. A derivation of
C∞(X) over R is the same as a vector field on X.

Proof. Vector fields act as derivations on C∞(X). Conversely, if D
is a derivation of C∞(X), then using partitions of unity, D defines
a derivation on C∞(X) for all U ⊆ X: if f ∈ C∞(U), p ∈ U , take
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ϕ ∈ C∞c (U) which is identically 1 in a neighborhood of p, and define
Df(p) = D(ϕf)(p). It is an exercise to show this is well-defined.

Now suppose U ⊆ X is a coordinate patch and x : U → Rn are
local coordinates. If f ∈ C∞(U) and q ∈ U with x(q) = (t1, . . . , tn),
we have

f = f(q) +
∑
i

(xi − ti)fi

for smooth functions fi, defined possibly in a possibly smaller neigh-
borhood of q [3, Lemma 2.1]. Then for a derivation D of C∞(X),
Df(q) =

∑
i d(xi)(q)fi(q). But fi(q) = ∂f

∂xi
(q), so

Df(q) =
∑
i

d(xi)(q)
∂f

∂xi
(q).

As q was arbitrary, we obtain D =
∑

i d(xi)
∂
∂xi

on U . This shows that
D is a vector field on U . Then glue patches.

In this proof, partitions of unity showed that a derivation of global
functions descended to compatible derivations of local functions. In a
more general geometric context, we will have to use sheaves of deriva-
tions instead.

Let π : X → S be a morphism of ringed spaces. Here are the
two key examples for this talk: first, if X is a smooth manifold, S is a
point, and both are equipped with their rings of smooth real functions;
second, if X → S is a morphism of schemes.

Definition 1.3. The relative tangent sheaf of X/S is the sheaf

T (X/S) = Derπ−1OS
(OX)

of π−1OS-linear derivations OX → OX .

Example 1.4. If M → M ′ is a submersion of manifolds, then the
relative tangents TM/M ′ are given by

0→ TM/M ′ → TM/R → TM ′/R → 0,

which is dual to the Euler exact sequence.
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1.2 The ring of differential operators

There are two definitions of the ring of differential operators. In gen-
eral, they are not equal, but they agree in the case of a smooth mor-
phism of schemes in characteristic zero.

Definition 1.5. DX/S is the sub-sheaf of rings of E ndπ−1OS
(OX)

locally generated by π−1OS and TX/S .

Definition 1.6. Let B → A be a morphism of commutative rings.
The Grothendieck differential operators of order n, written FnDA/B

are exactly the B-linear functions d : A → A satisfying that for all
f ∈ A,

[d, f ] ∈ Fn−1DA/B,

where we view f as acting as multiplication on A, with F−1DA/B = 0.
The ring of Grothendieck differential operators of A/B is DA/B =

∪nDA/B.

Let’s calculate the Grothendieck differential operators of order 0
and 1. The order 0 differential operators are exactly the A-linear
functions A→ A, so F0DA/B = A.

If d ∈ F1DA/B then for all f, g ∈ A,

d(fg) = fd(g) + [d, f ]g.

In particular,taking g = 1 gives

d(f) = fd(1) + [d, f ].

The function d is a derivation if and only if d(1) = 0, and d is in OX
if and only if [d, f ] = 0 for all f . This shows F1DA/B = A⊕DerB(A),
via the projections d 7→ d(1) and d 7→ d− d(1).

Exercise 1.7. DA/B is an almost commutative filtered ring: we have
for d ∈ FnDA/B and d′ ∈ FmDA/B that d ◦ d′ ∈ Fn+mDA/B and
[d, d′] ∈ Fn+m−1DA/B. Conclude

grF DA/B = ⊕n≥0FnDA/B/Fn−1DA/B

is a commutative A-algebra.

Proposition 1.8. [1, Exercise 2.1.16] If B contains a field of char-
acteristic zero, B → A is of finite type, and DerB(A) is a locally
free A-module, then grDA/B = Sym∗A DerB(A), induced by the map
DerB(A) ∼= gr1DA/B.
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Now one can define Grothendieck differential operators of X →
S as the sheafification of local Grothendieck differential operators.
The proposition above ensures that locally, Grothendieck differential
operators are generated by vector fields.

Corollary 1.9. If X → S is a smooth morphism of schemes in char-
acteristic zero, our two definitions of differential opeartors agree, and
DX/S is generated by TX/S subject to the relations [ξ, f ] = ξ(f) for
ξ ∈ TX/S, f ∈ OX and ξ1ξ2 − ξ2ξ1 = [ξ1, ξ2] for [−,−] the bracket on
TX/S and ξi ∈ TX/S.

That these relations suffice can be checked by passing to associated
graded.

Remark 1.10. The filtration F corresponds to the PBW filtration on
DX/S: FnDX/S is the span of morphisms whith are products of at most
n vector fields. Then, a PBW theorem may be proven directly, as in
[1, Corollary 2.1.8].

Example 1.11. If X = Ank → S = Spec k, (suppressing S from
now on,) then Γ(X, TX/k) = k[x1, . . . , xn]{∂1, . . . , ∂n} with bracket
[∂i, ∂j ] = 0 for all i and j and ∂i(xj) = δij . Hence

DX/k = k〈x1, . . . , xn, ∂1, . . . , ∂n〉

modulo the relations [xi, xj ] = [∂i, ∂j ] = 0, [∂i, xj ] = δij . This is
known as the Weyl algebra An.

2 DX-modules

From this point, our spaces are smooth varieties over S = SpecC. The
base scheme S will be suppressed from the notation.

Definition 2.1. A DX -module is a sheaf on X which is a module over
DX and quasicoherent as an OX -module (with respect to OX ⊆ DX).

We have a presentation of DX , generated by TX with certain re-
lations. So, to define a DX -module structure on an OX -module is
to specify the action of TX , satisfying certain relations. For a left
DX -module, these relations coincide with those of a connection.

Proposition 2.2. [2, Lemma 1.2.1] A left DX-module is the same
as a quasi-coherent OX-module M equipped with a connection ∇ :
TX ⊗CM→M satisfying
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1. ∇fθ(m) = f∇θm
2. ∇θ(fm) = f∇θm+ θ(f)m,

3. [∇θ1 ,∇θ2 ] = ∇[θ1,θ2].

The last condition is that∇ has zero curvature, and so is sometimes
called flatness; it is also known as integrability.

Example 2.3. The ring of functions OX with natural action by
derivations of TX makes it a DX -module.

2.1 Aside on smooth manifolds

For M a smooth manifold over R, we have bijections

{rank n vector bundles with flat connection}
l

{rank n locally constant sheaves}
l

{n-dimensional representation of π1(M)}.

The first arrow sends (E,∇) to {s | ∇s = 0}. The integrability condi-
tion, with the Frobenius integrability theorem, implies that the result
is a rank n locally constant sheaf. The second is standard algebraic
topology: a locally constant sheaf is determined by its monodromy
representation.

This is a version of the Riemann-Hilbert correspondence. A version
also exists in the algebraic category, but I can’t talk about it.

2.2 Right DX-modules

Proposition 2.4. [2, Lemma 1.2.5] A right DX-module is the same
as an OX-module P and a map ∇′ : TX ⊗CM→M satisfying

1. ∇′fθ(m) = ∇′θ(fm),

2. ∇′θ(fm) = f∇′θm+ θ(f)m,

3. [∇′θ1 ,∇
′
θ2

] = ∇′[θ1,θ2].

The right structure is given by: for a ∈ P and θ ∈ TX , aθ = −∇′θ(a).

Example 2.5. The canonical bundle ωX =
∧dimX Ω1

X is a right DX -
module under ∇′θ = Lieθ.
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The philosophy is that left D-modules are functions, and right
D-modules are measures. This will come up when defining the six
functors for DX -modules.

2.3 Side-changing

The Weyl algebra has an anti-automorphism xi 7→ xi, ∂i 7→ −∂i.
Hence A ∼= Aop, so a left-module may be considered as a right-module
via the above. This works on a general affine variety, but not globally.
Instead, we need a global twist.

The canonical bundle ωX/S changes between left and right D-
modules. In local coordinates, for a = fdx1 ∧ · · · dxn,

Lie∂j fdx1 ∧ · · · ∧ dxn = (∂jf)dx1 ∧ · · · ∧ dxn
and so in general

a∂j = −∂jfdx1 ∧ · · · ∧ dxn,

suggesting the anti-automorphism of the Weyl algebra we discussed
earlier. See [2, Lemma 1.2.6] for more details.

2.3.1 Hom and tensor

Tensoring two left DX -modules produces a left module. Tensoring
a left DX module M and a right DX -module N ′ gives a right DX -
module, with

(m⊗ n)θ = m⊗ nθ − θm⊗ n.
Also, if M′ and N ′ are right DX -modules, then HomOX

(M′,N ′) is
a left DX -module with (θφ)(m) = φ(mθ) − θ(φ(m)) [2, Proposition
1.2.9]. Then

ωX ⊗− : DX -mod←→ DopX -mod : HomOX
(ωX ,−)

is an equivalence between left- and right- DX -modules, since they are
quasi-inverses on the underlying OX -modules as ωX is a line bundle.
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