A Module-Theoretic Approach to Matroids

Joshua Mundinger

Swarthmore College

March 17, 2018

Joint work with Colin Crowley and Noah Giansiracusa

David Speyer defined a tropical linear space to be a certain type of polyhedral complex (2008).

Tropical linear spaces have *tropical Plücker coordinates* which satisfy the tropical analogue of the Plücker relations.

Theorem (Fink 2014)

Tropical linear spaces are degree 1 tropical varieties.

Summary

Our perspective:

- Tropical linear spaces \leftrightarrow certain modules over \mathbb{T} .
- ► "Constant-coefficient" tropical linear spaces ↔ matroids.
- ► Geometric properties of tropical linear spaces ↔ combinatorial properties of matroids.

$$\begin{array}{ccc} k & \text{Vector spaces} \\ & \swarrow & \text{tropicalize} \\ & & & \\ & &$$

Definition

A semiring S satisfies all the axioms of a ring, except for the existence of additive inverses.

Definition

A semiring S satisfies all the axioms of a ring, except for the existence of additive inverses.

Example

The tropical semifield $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ has operations

- addition $a \oplus b = \max\{a, b\}$
- multiplication $a \odot b = a + b$.

 \mathbb{T} is an *idempotent* semiring: $a \oplus a = a$ for all $a \in \mathbb{T}$.

Definition

A semiring S satisfies all the axioms of a ring, except for the existence of additive inverses.

Example

The tropical semifield $\mathbb{T} = \mathbb{R} \cup \{-\infty\}$ has operations

- addition $a \oplus b = \max\{a, b\}$
- multiplication $a \odot b = a + b$.

 \mathbb{T} is an *idempotent* semiring: $a \oplus a = a$ for all $a \in \mathbb{T}$.

Example

The Boolean semifield is the sub-semiring $\mathbb{B} = \{-\infty, 0\} \subseteq \mathbb{T}$.

Definition

A module over a semiring S is an abelian monoid M with a bilinear, associative map $S \times M \to M$ such that, written multiplicatively, 1m = m for all $m \in M$.

Definition

A module over a semiring S is an abelian monoid M with a bilinear, associative map $S \times M \to M$ such that, written multiplicatively, 1m = m for all $m \in M$.

Example

 \mathbb{T}^n has standard basis $e_i = (-\infty, \dots, -\infty, 0_i, -\infty, \dots, -\infty)$. Note $e_i \in \mathbb{B}^n \subset \mathbb{T}^n$.

Definition

A module over a semiring S is an abelian monoid M with a bilinear, associative map $S \times M \to M$ such that, written multiplicatively, 1m = m for all $m \in M$.

Example

 \mathbb{T}^n has standard basis $e_i = (-\infty, \dots, -\infty, 0_i, -\infty, \dots, -\infty)$. Note $e_i \in \mathbb{B}^n \subset \mathbb{T}^n$.

Theorem

If M is a free \mathbb{T} -module, then M has a unique basis up to permutation and scaling.

Matroids

Definition

A matroid on ground set E with bases \mathcal{B} is a set \mathcal{B} of subsets of E which satisfies *strong basis exchange*: if $B, B' \in \mathcal{B}$ and $u \in B - B'$, then there exists $u' \in B' - B$ such that B - u + u' and B' - u' + u are in \mathcal{B} .

Cryptomorphisms of matroid axioms: independent sets, circuits (minimal dependence relations), flats, ...

i

Tropical linear spaces are described by Plücker coordinates: $w_I \in S$ for $I \in {E \choose d}$ such that

$$\sum_{\in A-B} w_{A-i} w_{B+i} = \sum_{i \neq j} w_{A-i} w_{B+i}$$

for all $A \in {E \choose d+1}$, $B \in {E \choose d-1}$, and $j \in A - B$. When $w_l \in \mathbb{B}$: equivalent to *strong basis exchange* axiom for $\mathcal{B} = \{l : w_l \neq -\infty\}$. What is a tropical linear space?

Definition If $w \in S^{\binom{E}{d}}$ are tropical Plücker coordinates, the tropical linear space $L_w \subseteq S^E$ with coordinates w is

$$\bigcap_{J \in \binom{E}{d+1}} \{ v : \sum_{i \in J} w_{J-i} v_i = \sum_{i \in J-j} w_{J-i} v_i \text{ for all } j \in J \}$$

What is a tropical linear space?

Definition If $w \in S^{\binom{E}{d}}$ are tropical Plücker coordinates, the tropical linear space $L_w \subseteq S^E$ with coordinates w is

$$\bigcap_{J \in \binom{E}{d+1}} \{ v : \sum_{i \in J} w_{J-i} v_i = \sum_{i \in J-j} w_{J-i} v_i \text{ for all } j \in J \}$$

If *M* is a matroid on *E*, let $L_M \subseteq \mathbb{B}^E$ denote the tropical linear space with Plücker coordinates the indicator vector of bases of *M*.

What is a tropical linear space?

Definition If $w \in S^{\binom{E}{d}}$ are tropical Plücker coordinates, the tropical linear space $L_w \subseteq S^E$ with coordinates w is

$$\bigcap_{J \in \binom{E}{d+1}} \{ v : \sum_{i \in J} w_{J-i} v_i = \sum_{i \in J-j} w_{J-i} v_i \text{ for all } j \in J \}$$

If *M* is a matroid on *E*, let $L_M \subseteq \mathbb{B}^E$ denote the tropical linear space with Plücker coordinates the indicator vector of bases of *M*.

Theorem (Murota 2001, matroid folklore)

If M is a matroid, then L_M is generated as a \mathbb{B} -module by the indicator vectors of cocircuits.

Minors of matroids

If *M* is a matroid on *E* and $T \subset E$, then two matroids on E - T may be defined:

- deletion $M \setminus T$
- contraction M/T.

Minors of matroids

If *M* is a matroid on *E* and $T \subset E$, then two matroids on E - T may be defined:

- deletion $M \setminus T$
- contraction M/T.

Theorem (Frenk 2013)

Let M be a matroid on E, and let T be a subset of that ground set. Then

$$\blacktriangleright \ L_{M/T} = L_M \cap \mathbb{T}^{E-T}$$

$$\blacktriangleright L_{M\setminus T} = \pi_{E-T}(L_M)$$

Definition

Let *M* be a matroid on *E* and *N* be a matroid on *F*. A strong map $f: M \to N$ is a pointed function $f: E \cup * \to F \cup *$ such that the preimage of a flat of *N* is a flat of *M*.

Definition

Let *M* be a matroid on *E* and *N* be a matroid on *F*. A strong map $f: M \to N$ is a pointed function $f: E \cup * \to F \cup *$ such that the preimage of a flat of *N* is a flat of *M*.

Theorem

Let $f : E \cup * \to F \cup *$ be a function. Define $f_* : \mathbb{T}^E \to \mathbb{T}^F$ by

$$f_*(e_i) = \begin{cases} e_{f(i)} & f(i) \neq * \\ 0 & f(i) = * \end{cases}$$

Let M and N be matroids on E and F. Then $f : M \to N$ is a strong map if and only if the dual transformation f_*^{\vee} satisfies $f_*^{\vee}(L_N) \subseteq L_M$.

Theorem (Higgs 1968)

Let M and N be matroids on E. Then $id : M \to N$ is a strong map if and only if there exists Q on $E \cup I$ such that $M = Q \setminus I$ and N = Q/I.

Theorem (Higgs 1968)

Let M and N be matroids on E. Then id : $M \to N$ is a strong map if and only if there exists Q on $E \cup I$ such that $M = Q \setminus I$ and N = Q/I.

Theorem

Let M and N be matroids on the same ground set E. Then $L_N \subseteq L_M$ if and only if there exists L_Q such that $\pi_E(L_Q) = L_M$ and $L_Q \cap \mathbb{T}^E = L_N$.

Definition (Fink and Rincon, 2015)

A Stiefel tropical linear space is a tropical linear space whose Plücker coordinates are the maximal minors of a tropical matrix. Stiefel tropical linear spaces over \mathbb{B} : transversal matroids.

Transversal matroids

For the classical Stiefel map $k^{d \times n} \rightarrow \bigwedge^d k^n$, the fibers are GL_d -orbits. Every fiber contains a unique matrix of the form $\begin{bmatrix} I_d & A' \end{bmatrix}$ (up to column permutation).

Theorem

A Stiefel tropical linear space L over \mathbb{B} is represented by a matrix $A = \begin{bmatrix} I_d & A' \end{bmatrix}$ (up to column permutation) if and only if L corresponds to a fundamental transversal matroid.

Future directions

• Classifying general $L \subset L'$

Future directions

- Classifying general $L \subset L'$
- Matroids over hyperfields