Math 267 Homework 8, Partial Solutions

Joshua Mundinger josh@math.uchicago.edu

December 10, 2019

8.7 Let V be of dimension 2. For $a \ge b$, show that the highest weights of the irreducible representations in $\operatorname{Sym}^a V \otimes \operatorname{Sym}^b V$ for $a \ge b$ are $(a+b,0), (a+b-1,1), \ldots, (a,b)$, each with multiplicity one.

Solution via characters: The character of the representation with highest weight (a,0) is $\phi_a = \sum_{i=0}^{a} z_1^i z_2^{a-i}$. Since the determinant character $z_1 z_2$ has weight (1,1), the character of the representation (a+k,k) is $(z_1 z_2)^k \sum_{i=0}^{a} z_1^i z_2^{a-i}$. The character of the tensor product $\operatorname{Sym}^a V \otimes \operatorname{Sym}^b V$ is thus

$$\phi_a \phi_b = (\sum_{i=0}^a z_1^i z_2^{a-i}) (\sum_{j=0}^b z_1^j z_2^{b-j})$$

The term $z_1^k z_2^\ell$ appears in this product with coefficient

$$\begin{split} |\{(i,j) \mid 0 \leq i \leq a, 0 \leq j \leq b, i+j=k\}| &= |\{i \mid 0 \leq i \leq a, b-k \leq i \leq k\}| \\ &= \min\{a,k\} - \max\{0,b-k\} + 1 \\ &= \min\{a,k,a+b-k,b\} + 1 \\ &= \min\{k,\ell,b\} + 1. \end{split}$$

This gives the decomposition

$$\phi_a \phi_b = \phi_{a+b} + z_1 z_2 \phi_{a-1} \phi_{b-1}.$$

which inductively gives the formula

$$\phi_a \phi_b = \sum_{i=0}^b \phi_{a+b-i} (z_1 z_2)^i.$$

This gives the desired irreducible decomposition of $\operatorname{Sym}^a V \otimes \operatorname{Sym}^b V$ by character theory.

Solution via polynomial rings: [Omitted since it was wrong.]

Geometric Solution: Consider that $\operatorname{Sym}^* V \otimes \operatorname{Sym}^* V$ is the ring of polynomials on $V^* \times V^*$. Let $\{e_1, e_2\}$ be the standard basis of V, and let $\{e^1, e^2\}$ be the dual basis of V^* . Then let

$$X = \{(a_1e^1 + a_2e^2, b_1e^1) \mid b_1 \neq 0\} \subseteq V^* \times V^*$$

. Then $U \times X \to V^* \times V^*$ is injective: if $ub_1e^1 = u'b'_1e^1$, then u = u' since u and u' are determined by their first row. Full injectivity follows from this calculation. Further, the image is dense. So, $(\text{Sym}^* V \otimes \text{Sym}^* V)^U \subseteq \mathbb{C}[X]$. We need to know which functions in the target extend to U-invariant polynomials on $V^* \times V^*$.

Now the function $(a_1e^1 + a_2e^2, b_1e^1) \mapsto b_1$ on X extends to $V^* \times V^*$ as $1 \otimes e_1 \in \operatorname{Sym}^* V \otimes \operatorname{Sym}^* V$. The function $(a_1e^1 + a_2e^2, b_1e^1) \mapsto a_1$ extends to $V^* \times V^*$ as $e_1 \otimes 1 \in \operatorname{Sym}^* V \otimes \operatorname{Sym}^* V$. The function $(a_1e^1 + a_2e^2, b_1e^1) \mapsto a_2b_1$ extends to $V^* \times V^*$ as $e_2 \otimes e_1 - e_1 \otimes e_2 \in \operatorname{Sym}^* V \otimes \operatorname{Sym}^* V$. These functions have weight (1,0), (1,0), and (1,1) respectively. The monomial functions on X are exactly of the form $a_1^i a_2^j b_1^k$, and the above computation shows that the monomial extends to $V^* \times V^*$ if and only if $j \leq k$. Thus,

$$(\operatorname{Sym}^* V \otimes \operatorname{Sym}^* V)^U = \mathbb{C}[e_1 \otimes 1, 1 \otimes e_1, e_2 \otimes e_1 - e_1 \otimes e_2].$$

These three elements indeed generate a polynomial ring by considering weights: the elements $e_1 \otimes 1$ and $1 \otimes e_1$ generate a polynomial ring with weights (n, 0) for $n \geq 0$, while $e_2 \otimes e_1 - e_1 \otimes e_2$ has weight (1, 1).

The weight vector

$$(e_1 \otimes 1)^i (1 \otimes e_2)^j (e_2 \otimes e_1 - e_1 \otimes e_2)^k,$$

as an element of $\operatorname{Sym}^* V \otimes \operatorname{Sym}^* V$, has degree i + k in the first coordinate and j + k in the second coordinate. Hence, it lies in $\operatorname{Sym}^a V \otimes \operatorname{Sym}^b V$ if and only if i + k = a and j + k = b. It has weight (i + j + k, k). Thus, the highest weight vectors in $\operatorname{Sym}^a V \otimes \operatorname{Sym}^b V$ have weights exactly (a - b + k, k) where $k \in \{0, 1, \ldots, b\}$.

8.12 Let (V_i, H_i) be \mathbb{C} -vector spaces with positive-definite Hermitian forms for i = 1, 2. Let $V = V_1 \oplus V_2$ and $H = H_1 - H_2$ on V, that is

$$H(v_1 \oplus v_2, w_1 \oplus w_2) = H_1(v_1, w_1) - H_2(v_2, w_2)$$

for all $v_i, w_i \in V_i$. Let U(V, H) be the group of H-preserving transformations on V. Show that any compact subgroup $G \leq U(V, H)$ is contained in $g(U(V_1, H_1) \times U(V_2, H_2))g^{-1}$ for some $g \in U(V, H)$.

Solution: We first show that there are subspaces V^+, V^- of V such that $V = V^+ \oplus V^-, V^+$ and V^- are orthogonal with respect to $H, \pm H$ restricted to V^{\pm} is positive-definite, and G preserves V^+ and V^- .

Let B be a positive-definite G-invariant Hermitian form. Then by Riesz representation, there exists $T: V \to V$ such that

$$B(Tv, w) = H(v, w)$$

for all $v, w \in V$. Since H is nondegenerate, T is an isomorphism. Since B and H are both Hermitian,

$$B(Tv, w) = H(v, w) = H(w, v) = B(Tw, v) = B(v, Tw),$$

so T is self-adjoint. Hence, $V = V^+ \oplus V^-$ for V^+ the positive eigenspaces of T and V^- the negative eigenspaces of T; these eigenspaces are orthogonal with respect to B. Since T takes V^{\pm} into V^{\pm} , V^+ and V^- are orthogonal with respect to H. Since H(v, v) = B(Tv, v), by decomposing V into eigenspaces for T, we see $\pm H$ is positive-definite on V^{\pm} , respectively. Since B and H are both nondegenerate and G-invariant, T is G-invariant, so V^+ and V^- are G-invariant.

Define $g_+: V^+ \to V_1$ such that $H_1(g_+v, g_+w) = H(v, w)$ for all $v, w \in V^+$, and $g_-: V^- \to V_2$ such that $H_2(g_-v, g_-w) = -H(v, w)$ for all $v, w \in V^-$. These exist since $\pm H$ is positive-definite on V^{\pm} . Then $g = g_+ \oplus g_-: V \to V$ is an isomorphism, and H(gv, gw) = H(v, w) for all $v, w \in V$ by construction. Hence $g \in U(V, H)$. Since V^+ and V^- are *G*-invariant, V_1 and V_2 are gGg^{-1} invariant. Thus gGg^{-1} preserves $H|_{V_1} = H_1$ and $H|_{V_2} = H_2$, so $gGg^{-1} \subseteq U(V_1, H_1) \times U(V_2, H_2)$, as desired.