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8.7 Let V be of dimension 2. For a ≥ b, show that the highest weights of the
irreducible representations in Syma V ⊗ Symb V for a ≥ b are (a+ b, 0), (a+ b−
1, 1), . . . , (a, b), each with multiplicity one.

Solution via characters: The character of the representation with highest
weight (a, 0) is φa =

∑a
i=0 z

i
1z

a−i
2 . Since the determinant character z1z2 has

weight (1, 1), the character of the representation (a+k, k) is (z1z2)k
∑a

i=0 z
i
1z

a−i
2 .

The character of the tensor product Syma V ⊗ Symb V is thus

φaφb = (

a∑
i=0

zi1z
a−i
2 )(

b∑
j=0

zj1z
b−j
2 ).

The term zk1z
`
2 appears in this product with coefficient

|{(i, j) | 0 ≤ i ≤ a, 0 ≤ j ≤ b, i+ j = k}| = |{i | 0 ≤ i ≤ a, b− k ≤ i ≤ k}|
= min{a, k} −max{0, b− k}+ 1

= min{a, k, a+ b− k, b}+ 1

= min{k, `, b}+ 1.

This gives the decomposition

φaφb = φa+b + z1z2φa−1φb−1.

which inductively gives the formula

φaφb =

b∑
i=0

φa+b−i(z1z2)i.

This gives the desired irreducible decomposition of Syma V ⊗ Symb V by char-
acter theory.

Solution via polynomial rings: [Omitted since it was wrong.]
Geometric Solution: Consider that Sym∗ V ⊗ Sym∗ V is the ring of polyno-

mials on V ∗ × V ∗. Let {e1, e2} be the standard basis of V , and let {e1, e2} be
the dual basis of V ∗. Then let

X = {(a1e1 + a2e
2, b1e

1) | b1 6= 0} ⊆ V ∗ × V ∗

1



. Then U × X → V ∗ × V ∗ is injective: if ub1e
1 = u′b′1e

1, then u = u′ since
u and u′ are determined by their first row. Full injectivity follows from this
calculation. Further, the image is dense. So, (Sym∗ V ⊗ Sym∗ V )U ⊆ C[X]. We
need to know which functions in the target extend to U -invariant polynomials
on V ∗ × V ∗.

Now the function (a1e
1 + a2e

2, b1e
1) 7→ b1 on X extends to V ∗ × V ∗ as

1 ⊗ e1 ∈ Sym∗ V ⊗ Sym∗ V . The function (a1e
1 + a2e

2, b1e
1) 7→ a1 extends to

V ∗×V ∗ as e1⊗ 1 ∈ Sym∗ V ⊗Sym∗ V . The function (a1e
1 +a2e

2, b1e
1) 7→ a2b1

extends to V ∗ × V ∗ as e2 ⊗ e1 − e1 ⊗ e2 ∈ Sym∗ V ⊗ Sym∗ V . These functions
have weight (1, 0), (1, 0), and (1, 1) respectively. The monomial functions on
X are exactly of the form ai1a

j
2b

k
1 , and the above computation shows that the

monomial extends to V ∗ × V ∗ if and only if j ≤ k. Thus,

(Sym∗ V ⊗ Sym∗ V )U = C[e1 ⊗ 1, 1⊗ e1, e2 ⊗ e1 − e1 ⊗ e2].

These three elements indeed generate a polynomial ring by considering weights:
the elements e1 ⊗ 1 and 1 ⊗ e1 generate a polynomial ring with weights (n, 0)
for n ≥ 0, while e2 ⊗ e1 − e1 ⊗ e2 has weight (1, 1).

The weight vector

(e1 ⊗ 1)i(1⊗ e2)j(e2 ⊗ e1 − e1 ⊗ e2)k,

as an element of Sym∗ V ⊗ Sym∗ V , has degree i+ k in the first coordinate and
j + k in the second coordinate. Hence, it lies in Syma V ⊗ Symb V if and only
if i + k = a and j + k = b. It has weight (i + j + k, k). Thus, the highest
weight vectors in Syma V ⊗ Symb V have weights exactly (a − b + k, k) where
k ∈ {0, 1, . . . , b}.
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8.12 Let (Vi, Hi) be C-vector spaces with positive-definite Hermitian forms for
i = 1, 2. Let V = V1 ⊕ V2 and H = H1 −H2 on V , that is

H(v1 ⊕ v2, w1 ⊕ w2) = H1(v1, w1)−H2(v2, w2)

for all vi, wi ∈ Vi. Let U(V,H) be the group of H-preserving transformations on
V . Show that any compact subgroup G ≤ U(V,H) is contained in g(U(V1, H1)×
U(V2, H2))g−1 for some g ∈ U(V,H).

Solution: We first show that there are subspaces V +, V − of V such that
V = V +⊕V −, V + and V − are orthogonal with respect to H, ±H restricted to
V ± is positive-definite, and G preserves V + and V −.

Let B be a positive-definite G-invariant Hermitian form. Then by Riesz
representation, there exists T : V → V such that

B(Tv,w) = H(v, w)

for all v, w ∈ V . Since H is nondegenerate, T is an isomorphism. Since B and
H are both Hermitian,

B(Tv,w) = H(v, w) = H(w, v) = B(Tw, v) = B(v, Tw),

so T is self-adjoint. Hence, V = V + ⊕ V − for V + the positive eigenspaces of
T and V − the negative eigenspaces of T ; these eigenspaces are orthogonal with
respect to B. Since T takes V ± into V ±, V + and V − are orthogonal with
respect to H. Since H(v, v) = B(Tv, v), by decomposing V into eigenspaces for
T , we see ±H is positive-definite on V ±, respectively. Since B and H are both
nondegenerate and G-invariant, T is G-invariant, so V + and V − are G-invariant.

Define g+ : V + → V1 such that H1(g+v, g+w) = H(v, w) for all v, w ∈ V +,
and g− : V − → V2 such that H2(g−v, g−w) = −H(v, w) for all v, w ∈ V −.
These exist since ±H is positive-definite on V ±. Then g = g+ ⊕ g− : V → V
is an isomorphism, and H(gv, gw) = H(v, w) for all v, w ∈ V by construction.
Hence g ∈ U(V,H). Since V + and V − are G-invariant, V1 and V2 are gGg−1-
invariant. Thus gGg−1 preserves H|V1

= H1 and H|V2
= H2, so gGg−1 ⊆

U(V1, H1)× U(V2, H2), as desired.
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